ANALYSIS OF FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA USING SPM99:

LATERALIZATION INDEX

DONNA ROSE ADDIS

DEPT. OF PSYCHOLOGY, UNIVERSITY OF TORONTO TORONTO WESTERN RESEARCH INSTITUTE

ACKNOWLEDGEMENTS

Information contained herein has been compiled from my own SPM99 experience at Toronto Western Research Institute, that of others in the Functional Imaging Research and Evaluation (FIRE) group at the University Health Network, the SPM email list (<u>http://www.fil.ion.ucl.ac.uk/spm/</u>) and helpful websites (such as that of Kalina Christoff, <u>http://www-psych.stanford.edu/~kalina/SPM99/</u>). Also, thanks to our over-worked physicist, Adrian Crawley, for all of his help.

SPM: MASKING IMAGES

41. Creating Region of Interest (ROI) masks

Download MARINA from: http://www.bion.de/Marina.htm

- Run MARINA
- Select region(s) you want in your mask by double-clicking on region name(s).
- Click on the "<u>create mask</u>" icon
- Save mask (e.g., *mask*.img*)
- Outputs: creates <u>mask*.img</u> and <u>mask*.hdr</u> files

42. Applying masks to activation images

- Select <u>ImCalc</u> from main menu
- Select images: Select mask*.img file, THEN spmT*.img you wish to mask
- Output name: e.g., *s1_LHC_masked*
- Evaluated function: *i2.*(i1>0)* Note: *i1* is the first image you selected (mask) and *i2* is the second image you selected (spmT*.img)
- Outputs: creates masked image, e.g., <u>s1 LHC masked.img</u>

Display masked activation map

- Select **<u>Display</u>** from main menu
- Select masked image (e.g., <u>s1 LHC masked.img</u>)
- For an image masked with a hippocampal mask, it should look something like this:

Crosshair Position		File:6_b kup / masked_sp-con.img Dimensions: 79 x 95 x 68 Datatype: int16 Intensity: Y = 0.0001 3421 3 X spm - algebra
right {mm} foward {mm} up {mm} pitch {rad} roll {rad} yaw {rad} resize {x}	0 0 0 0 0 0 1	Vox size: 2 x 2 x 2 Origin: 40 57 25 Dir Cos: 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000
resize {y}	1	Full Volume 🗾 Hide Grosshairs
resize {z}	<u></u>	World Space 🔤 bilin interp 🚍
Reorient images	Reset	Auto Window 📖 📔 Add Blobs

• Note down scale factor, i.e., the weight applied to the X in intensity equation (e.g., .000134).

43. Counting the number of activated voxels within the ROI

- Use thresh_voxel_count script (email <u>donnad@psych.utoronto.ca</u> for script)
- In the terminal window type, *thresh_voxel_count scale_factor threshold_t_score < file_name*
- e.g., thresh_voxel_count.000134 2.35 < s1_LHC_masked.img
- This will output the number of activated voxels and the total number of voxels in the mask

44. Calculating Lateralization Index

- Once the number of voxels has been counted within the ROI in the left and right hemisphere, the lateralization index can be calculated for each subject.
- Either the raw number of activated voxels in each structure, or the number of activated voxels as a proportion of the total number of voxels within the structure can be entered into the following asymmetry-ratio formula: [(L-R)/(L+R)]