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Introduction 
Functional Magnetic Resonance Imaging (fMRI) has rapidly become a widely used 

tool for measuring brain function. fMRI reveals which parts of the brain are active in certain 
tasks with a spatial resolution of 2-5 millimetres, which is superior to any of the other non-
invasive techniques in cognitive neuroscience. This means that places of activity in the brain 
that are as close as 2-5 millimetres apart in the brain can still be distinguished from each 
other. The temporal resolution (the minimal distance in time between two data points that can 
still be distinguished), however, is relatively poor (5-8 seconds) (Horwitz et al., 2000). Given 
this superior spatial resolution but poor temporal resolution, fMRI is best seen as a 
complementary tool for understanding brain function.  

To start with, some of the principles underlying MRI will be considered. How is the 
MRI image obtained? This will be explained in the first section of this report. In cognitive 
neuroscience, MRI is used to indirectly infer the functional activity of the brain, in which case 
it is referred to as functional Magnetic Resonance Imaging (fMRI). How neural activation 
leads to an fMRI signal will be discussed in the second section of this report. In the third 
section of this report, attention will be focused towards issues relating to the different kinds of 
experimental design that can be used in fMRI experiments. The fourth section of this report 
will be devoted to the different steps of analysing fMRI datasets. 

1 The basics of MRI 
Magnetic Resonance Imaging, or MRI, typically measures the response of hydrogen 

molecules to a perturbation while in a magnetic field. Explaining the physics of MRI in full 
detail would be beyond the scope of this report. However, some basic knowledge of the 
principles is required to fully understand the subsequent sections. 

There are three basic steps involved in measuring the MRI signal. The first step is to 
place the brain in a magnetic field. The second step is the application of a brief 
radiofrequency (RF) pulse and the third step is measuring the relaxation (Horowitz, 1995). 
Each of these steps will in turn be considered in the following paragraphs. 

1.1 The brain in a magnetic field 
The first step to measuring an MRI signal is to place the brain in a magnetic field. This 

will cause the atomic nuclei to align with the magnetic field. This occurs to all nuclei that are 
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electrically charged and spin around their axis. Of the many types of nuclei in the brain, it is 
the hydrogen nucleus that is most commonly measured in MRI (Horowitz, 1995). This is 
because hydrogen nuclei are abundant in the human brain and give a strong MRI signal. 
Hydrogen nuclei are positively charged particles that spin around their axis. When an 
electrically charged particle moves, it produces a magnetic field. This magnetic field can be 
represented as a vector (a mathematical entity with both an amplitude and a direction). 
Generally, a vector is mathematically depicted as an arrow where the length of the arrow 
represents the amplitude of the vector and the direction in which the arrow is pointing reflects 
the direction of the vector. Since each hydrogen nucleus produces a magnetic field, which can 
be represented as a vector, this equals saying that each hydrogen nucleus in the brain can be 
seen as a vector with the vector representing the strength and direction of the magnetic field 
of the hydrogen nucleus produced by its spinning around its axis. This vector is also known as 
the Magnetic Dipole Moment (MDM) (Horowitz, 1995; Jezzard & Clare, 2001). 

Before the brain is placed in a magnetic field, the MDM’s of each hydrogen nucleus 
points in a random direction: the nuclei are not aligned. When the brain is placed in a 
magnetic field, two things happen simultaneously (Horowitz, 1995; Jezzard & Clare, 2001). 
Firstly, the MDM’s of many of the hydrogen nuclei align themselves in the direction of the 
main magnetic field. How many of the MDM’s align themselves in the direction of the main 
magnetic field depends on the strength of this magnetic field. The stronger the magnetic field, 
the higher the percentage of the MDM’s that align themselves to the magnetic field 
(Horowitz, 1995; Jezzard & Clare, 2001). Secondly, when the brain is placed in a magnetic 
field the MDM’s of the hydrogen nuclei start to precess (see Fig. 1.1). The frequency of this 
precession depends first of all on the type of nucleus. This means that the MDM of a 
hydrogen nucleus will have a different frequency of precession from, for instance, the MDM 
of sodium nuclei in a certain magnetic field. Second of all, the frequency of precession 
depends on the strength of the magnetic field. The frequency of precession is directly 
proportional to the strength of the magnetic field, so the stronger the magnetic field the higher 
the frequency of precession. For example, in a magnetic field of 1.5 Tesla the frequency of 
precession for the MDM’s of hydrogen nuclei will be 64 MHz (64000000 revolutions per 
second) and in a magnetic field of 3 Tesla the frequency of precession will be 128 MHz 
(Horowitz, 1995; Jezzard & Clare, 2001). 
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Fig. 1.1: Precession of the MDM; the ‘tail’ is stationary while the ‘top’ moves around in a circular motion. 

1.2 Application of the radiofrequency pulse 
 The second step when measuring the MRI signal is the brief application of the 
radiofrequency pulse. The RadioFrequency (RF) pulse is typically an electromagnetic wave 
resulting from the brief application of an alternating current perpendicular to the direction of 
the main magnetic field, otherwise known as a 90˚ RF-pulse (Horowitz, 1995; Jezzard & 
Clare, 2001). The ultimate goal of this 90˚ RF-pulse is to ‘tip’ the MDM’s of the hydrogen 
nuclei. Conventionally, the direction along the main magnetic field is referred to as the z-axis. 
The 90˚ RF-pulse then basically ‘tips’ the MDM’s in the x-y plane (see fig. 1.2). This will 
only work if the frequency of the RF- pulse equals the frequency of the precession of the 
MDM’s. Because the MDM’s of the hydrogen nuclei have their own specific frequency of 
precession in a given magnetic field, it is possible to selectively ‘tip’ the MDM’s of the 
hydrogen nuclei (Horowitz, 1995; Jezzard & Clare, 2001). 

 
Fig 1.2: ‘Tipping’ of an MDM into the x-y plane during application of the RF-pulse. 

After the MDM’s of the hydrogen nuclei are ‘tipped’, the 90˚ RF-pulse is terminated 
and the MDM’s return to their original orientation. This returning to the original orientation is 
known as relaxation (Horowitz, 1995; Jezzard & Clare, 2001). 
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1.3 Relaxation 
After the 90˚ RF-pulse is terminated, the MDM’s of the hydrogen nuclei will return 

from their ‘tipped’ state to their original lower energy state of being aligned in the direction of 
the magnetic field (Horowitz, 1995; Jezzard & Clare, 2001). Basically, the RF-pulse poured 
energy into the system and this energy is released when the MDM’s return to their original 
state. This release of energy is known as relaxation and is the signal that is measured during 
MRI (Horowitz, 1995; Jezzard & Clare, 2001). 

The MDM of a hydrogen nucleus can be broken down into two components. One 
component of the MDM is the amplitude in the z-axis. The other component of the MDM is 
the amplitude in the x-y plane (Horowitz, 1995; Jezzard & Clare, 2001). Before application of 
the RF-pulse the amplitude in the z-axis is maximal while the amplitude in the x-y plane is 
zero. Just after application of the RF-pulse the amplitude in the z-axis is zero while the 
amplitude in the x-y plane is maximal. During relaxation the amplitude in the z-axis will 
slowly increase while the amplitude in the x-y plane slowly decreases. Therefore, the 
relaxation of the MDM’s of the hydrogen nuclei has two components; firstly, a re-growth 
along the z-axis and secondly, a decay in the x-y plane. The re-growth along the z-axis of the 
MDM’s is referred to as T1 relaxation. The decay in the x-y plane of the MDM’s is referred to 
as T2 relaxation (Horowitz, 1995; Jezzard & Clare, 2001). 

1.4 When it all comes together 
The application of the 90˚ RF-pulse and the measuring of the energy released during 

relaxation is repeated over a vast amount of times in a typical MRI experiment. 
Different tissues in the brain have different T1 and T2 relaxation rates (Horowitz, 1995; 
Jezzard & Clare, 2001). This means that at each moment after termination of the RF-pulse, 
the amplitude of the MDM’s of the hydrogen nuclei in the z-axis and the amplitude of the 
MDM’s in the x-y plane will be different for different tissues. If now the MRI signal is 
measured at a point after termination of the RF-pulse where either the relative difference 
between the amplitudes of the MDM’s of the hydrogen nuclei of different tissues in the z-axis 
is maximized or the relative difference between the amplitudes of the MDM’s of different 
tissues in the x-y plane is maximized a maximum contrast between different tissues will be 
obtained (Horowitz, 1995; Jezzard & Clare, 2001). At first, it sounds a bit counterintuitive 
that not the absolute difference in amplitude is maximized but instead the relative difference 
between the amplitudes is maximized. An analogy might clarify things a bit. Imagine a person 
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A who makes 20,000 dollars a year and a person B who makes 22,000 dollars a year. The 
absolute difference is 2,000 dollars but the relative difference is quite small (10%). As a 
consequence, person B doesn’t really feel a lot richer than person A because the contrast 
between the two incomes is not very big. If now, on the other hand, person A makes 3,000 
dollars a year and person B makes 4,700 dollars a year, even though the absolute difference is 
now smaller (1,700 dollars), the relative difference is a lot bigger. In the second case, even 
though the absolute difference is smaller, the relative difference is a lot larger and person B 
ends up feeling a lot better off than person A because the contrast between the two incomes is 
now a lot bigger. To return to contrasts between different tissues in the brain, it can now be 
seen that to maximize contrast between different tissues the MRI signal must be measured at a 
time when the relative difference in amplitudes of the MDM’s is maximized and not the 
absolute difference. 

When the MRI signal is measured at a point when the ratio of the amplitudes of 
MDM’s of different tissues in the z-axis is maximized, the signal is known as a T1 weighted 
signal. Alternatively, when the MRI signal is measured at a point when the ratio of the 
amplitudes of the MDM’s of different tissues in the x-y plane is maximized, the signal is 
known as a T2 weighted signal (Horowitz, 1995; Jezzard & Clare, 2001). By changing certain 
scanner parameters either a T1 weighted signal or a T2 weighted signal can be acquired 
(Horowitz, 1995; Jezzard & Clare, 2001). When the time from RF-pulse to measurement of 
the signal (TE) is kept short, while at the same time the time between two successive RF-
pulses (TR) is also kept short, the difference in T1 for the different tissues is maximized and 
the acquired scan is called a T1 weighted scan. T1 weighted scans are also known as 
anatomical scans, because they particularly show good contrast between grey and white 
matter. On the other hand, when the TE is long while at the same time the TR is also long, the 
difference in T2 for the different tissues is maximized and the acquired scan is called a T2 
weighted scan. T2 weighted scans are also known as pathological scans, because lesions 
appear very bright (Horowitz, 1995; Jezzard & Clare, 2001). 

1.5 T2* and the spin-echo pulse cycle 
In the previous sections, it was implied that the decay of the MDM’s in the x-y plane 

after termination of the 90˚ RF-pulse equals the T2 relaxation signal. This is, however, a 
simplification and to really understand the use of MRI we will need to explain T2 in more 
detail. True T2 decay is actually a lot slower than the decay of the MDM’s in the x-y plane 
after termination of the 90˚ RF-pulse. The decay of the MDM’s in the x-y plane is more 
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accurately described as T2* decay (Horowitz, 1995; Jezzard & Clare, 2001). So, the question 
remains; what is T2 decay? 

The reason why the MDM’s decay in the x-y plane (the T2* signal) is essentially due 
to dephasing (Horowitz, 1995; Jezzard & Clare, 2001). Remember that the MDM’s of 
hydrogen nuclei in a magnetic field of a certain field strength all precess at the same 
frequency. However, before the application of the 90˚ RF-pulse, they are not precessing in the 
same phase. To clarify this, an analogy with a clock can be helpful. Imagine a number of 
clocks that are not synchronized. Even though the hands of the different clocks rotate at the 
same frequency (an hour lasts equally long for all clocks), at a given moment the times the 
clocks indicate are not the same i.e. the clocks are not in phase. When applied to the 
precession of the MDM’s in a magnetic field, this means that even though the MDM’s precess 
at the same frequency, they will each be at a different position in their cycle at a given point 
in time i.e. they are precessing in a different phase (see fig. 1.3) (Horowitz, 1995; Jezzard & 
Clare, 2001). 

 
Fig 1.3: The top row displays one moment in the cycle of precession of 3 MDM’s that are in phase. The bottom 
row displays one moment in the cycle of precession of 3 MDM’s that are not in phase. 

At the moment when the 90˚ RF-pulse is applied, the MDM’s are ‘tipped’ in the x-y 
plane and are forced to precess in phase (as the brief RF-pulse ‘tips’ all the MDM’s 
simultaneously). Now the MDM signals are additive and therefore result in a strong signal in 
the x-y plane. After termination of the 90˚ RF-pulse, however, the precession of the MDM’s 
will gradually dephase. The MDM signals are now no longer additive, but cancel each other 
out and the signal decays. This is the T2* decay (Horowitz, 1995; Jezzard & Clare, 2001). 

a: In phase. 

b: Out of phase. 
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There are two reasons why the MDM’s dephase after termination of the 90˚ RF-pulse and the 
signal decays (Horowitz, 1995; Jezzard & Clare, 2001). The first one is magnetic field 
inhomogeneity. The strength of the magnetic field is not uniform and since the frequency of 
precession of the MDM’s depends on the strength of the magnetic field it follows that 
different MDM’s will precess at a different frequency and therefore this precession will get 
out of phase. The second reason why the MDM’s dephase is because of spin-spin interaction. 
Different hydrogen nuclei are surrounded by different other nuclei. These other nuclei affect 
the frequency of precession of the MDM of the hydrogen nuclei. The frequency of precession 
of each MDM’s will be differently affected by the surrounding nuclei. This, again, results in 
different frequencies of precession for different MDM’s and hence dephasing occurs 
(Horowitz, 1995; Jezzard & Clare, 2001). 

To summarize, initially the precession of the MDM’s is dephased. When the 90˚ RF-
pulse is applied, the MDM’s are forced to precess in phase, resulting in a signal in the x-y 
plane. After termination of the 90˚ RF-pulse, the precession of the MDM’s will dephase again 
due to the inhomogeneities in the magnetic field and spin-spin interactions and the signal in 
the x-y plane decays. This is T2* decay. 

The trick is that the dephasing due to the inhomogeneity of the magnetic field is 
correctable and by correcting for this source of dephasing the true T2 signal is obtained 
(Horowitz, 1995; Jezzard & Clare, 2001). Directly after application of the 90˚ RF-pulse the 
precession of the MDM’s is in phase. This means that at a given time, all the MDM’s will be 
at the same point in their cycle of precession. After termination of the 90˚ RF-pulse the 
precession of the MDM’s will slowly dephase. Basically, at a given time, different MDM’s 
will not longer be at the same point in their cycle of precession. If an RF-pulse is now applied 
from the opposite direction (180˚) as the direction from which the original RF-pulse was 
applied (90˚), the direction of rotation of the precession of the MDM’s is reversed. After the 
same amount of time has elapsed following the 180˚ RF-pulse as the amount of time between 
the 90˚ RF-pulse and the 180˚ RF-pulse, the MDM’s will be in phase again (Horowitz, 1995; 
Jezzard & Clare, 2001). 

An analogy might, again, be helpful. Imagine two cars leaving from the same point in 
the same direction. One is moving at a speed of 100 km/h and the other one is moving at a 
speed of 80 km/h. After a while the faster car will be further away from the point of origin 
than the slower car. After, for example, half an hour both cars turn around and head towards 
the point of origin again. If both cars keep moving at their same respective speed, they will 
both arrive at the point of origin again at the same time. To relate this analogy back, directly 
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after application of the 90˚ RF-pulse all the MDM’s are at the same point in their cycle of 
precession. After termination of the RF-pulse some MDM’s will rotate faster (have higher 
frequencies of precession) than others, the MDM’s dephase. After a while the 180˚ RF-pulse 
is applied and this makes the direction of precession of all the MDM’s reverse. The MDM’s, 
however, all keep their own frequency of precession and will arrive at their starting point (the 
point where they were directly after application of the 90˚ RF-pulse) in the cycle of precession 
at the same time, they will be in phase again. 

The important thing is that the time between the 180˚ RF-pulse and measurement of 
the signal must be the same as the time between the 90˚ RF-pulse and the 180˚ RF-pulse. A 
measurement cycle where one 90˚ RF-pulse is followed by one or more 180˚ RF-pulses with a 
measurement after each 180˚ RF-pulse is known as a spin-echo pulse cycle. Even though the 
spin-echo pulse cycle corrects for the decay in the signal caused by the inhomogeneities in the 
magnetic field, the signal still does eventually decay because of the dephasing due to spin-
spin interactions. The decay is now, however, a lot slower and this is the true T2 decay 
(Horowitz, 1995; Jezzard & Clare, 2001). 

2 From neural activation to the fMRI signal 
Besides looking at structural scans of the brain, MRI can also be used to look at 

functional activity of the brain, in which case it is referred to as functional Magnetic 
Resonance Imaging (fMRI). The type of scanning technique most commonly used to obtain 
fMRI images is Echo Planar Imaging (EPI), which is basically a technique that allows for fast 
measurement of the signal. The technique most commonly used in fMRI is the so-called 
BOLD (blood oxygenation level-dependent contrast) technique (Horwitz et al., 2000; Uğurbil, 
Toth & Kim, 2003). The BOLD technique is based on the fact that, under normal 
circumstances, neuronal activity and haemodynamics (regulation of blood flow and 
oxygenation) are linked in the brain (Heeger & Ress, 2002; Horwitz et al., 2000; Matthews, 
2001; Uğurbil, Toth & Kim, 2003). In this section the relationship between neuronal activity 
and haemodynamics will be explained. 

2.1 The T2* signal 
 As explained in the previous section, the amount of energy released by the hydrogen 
molecules after the termination of the RF-pulse gradually decays over time. The speed of this 
decay differs for different tissues and this makes the distinction between different types of 
tissue possible. One reason for the decay of the fMRI signal is the dephasing of the precession 
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of the MDM’s of the hydrogen nuclei due to inhomogeneities in the magnetic field. The larger 
the inhomogeneity of the magnetic field, the faster the precessions of the MDM’s will 
dephase and the faster the fMRI signal decays. Since the fMRI signal is measured at a 
predetermined point in time after termination of the RF-pulse, the magnitude of the fMRI 
signal will be smaller at that time of measurement when the signal decays faster as compared 
to when the signal decays slower (see fig. 2.1). Therefore, the larger the inhomogeneity of the 
magnetic field, the smaller the fMRI signal at the time of measurement (Heeger & Ress, 2002; 
Horowitz, 1995; Matthews, 2001). 

 

 
Fig. 2.1: Decay of the fMRI signal over time after termination of the RF-pulse. The blue curve represents the 
decay in fMRI signal in a magnetic field with a larger inhomogeneity. The red curve represents the decay in 
fMRI signal in a magnetic field with a smaller inhomogeneity. Therefore, the blue curve decays faster than the 
red curve. The green arrow indicates the point in time at which the signal intensity is measured. It can be seen 
that when the fMRI signal decays faster (the blue curve), the signal intensity at the moment of measurement is 
lower than when the fMRI signal decays slower (the red curve). 

 Usually, this inhomogeneity of the magnetic field is considered an artefact and 
through a process known as ‘shimming’ every attempt is made to make the overall magnetic 
field as uniform as possible. However, even though great care is taken to make the overall 
magnetic field as uniform as possible, small local inhomogeneities in the magnetic field still 
occur. In the BOLD fMRI technique these little inhomogeneities are used to indirectly 
measure neuronal activity. Since the T2 signal is relatively insensitive to inhomogeneities in 
the magnetic field (remember from the previous section that the T2 signal is obtained by 
correcting for the effects of the inhomogeneity of the magnetic field) it follows that the signal 
most commonly measured in BOLD fMRI is the T2* signal. 

The BOLD fMRI technique basically measures changes in the inhomogeneity of the 
magnetic field, which are a result of changes in the level of oxygen present in the blood 
(blood oxygenation). Deoxyhaemoglobin (red blood cells without an oxygen molecule 
attached to it) has magnetic properties and will cause an inhomogeneity in the magnetic field 
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surrounding it. Oxyhaemoglobin (red blood cells with an oxygen molecule attached to it) has 
hardly any magnetic properties and therefore has very little effect on the magnetic field 
surrounding it. Therefore, a high level of deoxyhaemoglobin in the blood will result in a 
greater field inhomogeneity and therefore in a decrease of the fMRI signal (Heeger & Ress, 
2002; Matthews, 2001). 

The function of the fMRI signal against time in response to a temporary increase in 
neuronal activity is known as the Haemodynamic Response Function (HRF). The HRF goes 
through three stages (see fig. 2.2) (Heeger & Ress, 2002). 

 
Fig 2.2: Time course of the HRF in response to a short-lasting increase in neuronal activity at time = 0. 

The fMRI signal initially decreases, because the active neurons use oxygen thereby 
increasing the relative level of deoxyhaemoglobin in the blood. This decrease, however, is 
tiny and is not always found (Uğurbil, Toth & Kim, 2003). Following this initial decrease, 
there is a large increase in the fMRI signal which reaches its maximum after approximately 6 
seconds. This increase is due to a massive oversupply of oxygen-rich blood. There are two 
main hypotheses regarding the reason for this increase in blood flow. The first theory states 
that the increase in blood flow compensates for the oxygen being used by the active neurons. 
However, the supply in oxygen by the increase in blood flow is much larger than the amount 
of oxygen used by the active neurons. Instead, the increase in blood flow is proportional to the 
amount of glucose being used by the active neurons. Therefore, the second theory states that 
the increase in blood flow instead compensates for the amount of glucose being used by the 
neurons and not the amount of oxygen (Heeger & Ress, 2002).In any case, the result of this 
oversupply of oxygen is a large decrease in the relative level of deoxyhaemoglobin, which in 
turn causes the increase in the fMRI signal. Finally, the last stage of the HRF is a slow return 
to the normal level of deoxyhaemoglobin and a decay of the fMRI signal until it has reached 
its original baseline level after an initial undershoot after approximately 24 seconds (Heeger 
& Ress, 2002). 
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It is important to note, first of all, that the BOLD fMRI signal is an indirect measure of 
the underlying neuronal activity and therefore strongly relies on the assumption that neuronal 
activity and haemodynamics are indeed linked. Secondly, the fMRI signal reflects the sum of 
the activity of a large group of neurons (Heeger & Ress, 2002). This first of all means that an 
increase of the fMRI signal can both be caused by a large increase in activation of a small 
group of neurons and by a small increase in activation of a large group of neurons (Heeger & 
Ress, 2002). Inherent, however, is also the deeper assumption that the neurons responsible for 
the same function will be grouped together in the brain. Thirdly, the BOLD fMRI signal is 
sensitive to contaminations of large veins in the brain (Lai, Glover & Haacke, 2000; Menon & 
Goodyear, 2001; Uğurbil, Toth & Kim, 2003). The relative decrease in deoxyhaemoglobin is 
larger in large veins than in small veins. This means that the maximum BOLD fMRI signal is 
often obtained in the large veins that can be a few millimetres away from the site of neural 
activation. Fourthly and related to the third point, the increase in blood flow (and the 
associated decrease in deoxyhaemoglobin) is not very specific to the area of neuronal 
activation (Lai, Glover & Haacke, 2000; Matthews, 2001; Menon & Goodyear, 2001; 
Uğurbil, Toth & Kim, 2003). Usually, veins supply blood to a larger area of the brain than 
just the area of neuronal activation. This leads to spatial blurring, where the area that shows 
an increase in fMRI signal is larger than the area of neuronal activation. Finally, it is also 
important to note that the haemodynamic response is inherently much slower than the 
underlying neuronal activity. Basically, the fMRI signal can be seen as a smoothed function 
of the underlying neuronal activity (Horwitz et al., 2000). Because of this slowness of the 
haemodynamic response, fMRI has a relatively poor temporal resolution when compared to 
methods that more directly measure neuronal activity such as EEG (Heeger & Ress, 2002). 
Note that this poor temporal resolution is inherent in the BOLD fMRI technique. While the 
spatial resolution might be improved by further technical innovations, the temporal resolution 
can not be improved because of this inherent slowness of the haemodynamic response. The 
only way to improve the temporal resolution would be by measuring a more direct 
consequence of neuronal activity instead of the indirect consequence that is the 
haemodynamic response. 

2.2 Optimizing the BOLD signal 
As noted in the previous section, the magnitude of the BOLD effects measured during 

fMRI is very small. As Figure 2.2 depicts, a visual flash may result in a 2% signal change in 
the occipital cortex (the first cortical stage of visual processing). This low signal-to-noise is a 
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severe limit on our statistical power (our ability to find real effects). Broadly speaking, there 
are three ways we can maximize statistical power. First, we can optimise the behavioural task 
used (e.g. using a block design), as discussed in the next section. Second, we can run very 
long fMRI sessions. Unfortunately, this is expensive and often results in participants feeling 
fatigue. A final method to maximize fMRI signal is to optimise the hardware, which we will 
discuss in this section. In practice, combining all three techniques is often required to detect 
subtle differences in the BOLD signal. 

In particular, we identify four common practices that influence the BOLD signal. First, 
we discuss echo planar imaging and spiral imaging to collect images of the brain quickly. 
Next, we note that the strength of the T2* signal is greatly dependent on the echo time (TE). 
Third, we discuss the relationship between magnet field strength and signal. Fourth, we 
discuss how the matrix size, voxel size and receiver coil all critically influence the measured 
signal.  

Optimal BOLD effects will be found when the echo time (TE) matches the T2* of 
blood. In theory, this means that the BOLD effect will be maximum with a TE of around 
65ms at a field strength of 1.5T  and around 40ms at 3.0T (Hennig et al., 2003). In practice, 
most labs use slightly shorter echo times. This probably reflects a trade-off: by using a shorter 
TE, the BOLD effect in each image is reduced but more images are collected in a fixed 
amount of time. Therefore, while the signal in each sample may be reduced, the larger number 
of samples results in improved statistical power. Furthermore, the shorter TE can result in 
slightly reduced image distortion. In our own research, we use echo planar imaging with a TE 
of 60ms at 1.5T and a TE of 30ms at 3.0T. 

As noted earlier, the numbers of hydrogen nuclei that align with the magnetic field 
depend directly on the field strength of the magnet (and the temperature of the sample, about 
37 Celcius for the human brain). In a 1.5 Tesla, about 4.5 nuclei per million are aligned with 
the field than against the field, while at 3.0 Tesla the number of rises to about 9 nuclei per 
million. Therefore, at higher field strength, there is theoretically more signal to measure. Also, 
as noted in the previous paragraph, the T2* of blood reduces at higher field strengths, 
allowing a shorter time to echo time. Therefore, we can collect images of the brain more 
rapidly at higher field strengths. Despite these advantages, higher field magnets also have 
limitations. First of all, increasing field strength drives up the installation and service cost for 
a MRI system, and higher field systems tend to be acoustically much louder (due to more 
powerful gradients required). Second, at higher field strengths inhomogeneity effects become 
more severe. Images from 3.0 Tesla magnets typically show much greater inhomogeity 
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artefacts (with some regions of the brain appearing brighter than other regions), and exhibit 
regions of signal dropout than images from 1.5 Tesla systems. Clearly, studies in single 
individuals do reveal stronger fMRI signals with increasing field strength (Hennig et al., 
2003). However, images from higher field scanners may not necessarily yield better signal in 
group studies (as image distortion results in poor normalization of images, as discussed later) 
and may result in an inability to measure some regions of the brain (such as the medial 
temporal lobe and ventral frontal lobe).  

With MRI scanning, one can trade-off image resolution for signal quality. By 
increasing the size of each voxel, we can effectively measuring more hydrogen nuclei. For 
example, consider axial slices where we have a 64x64 matrix (i.e. the image has 64 rows of 
pixels and 64 columns) with a field of view of 192x192mm (pixels are separated by 3mm in 
plane). If the distance between slices is 3mm, each voxel will measure 27mm3, and it will 
require around 36 axial slices to cover the entire cortex and most of the cerebellum. On the 
other hand, if we collect images that are 5mm thick, each voxel will measure 45 mm3, and we 
only need to collect around 22 slices. By collecting fewer slices, we can image the brain more 
rapidly, and get more samples of a given brain area. Another common technique to increase 
the speed of acquisition is to collect EPI data as axial or sagittal slices instead of coronal 
slices (as the brain is longest in the axial-posterior direction). Another issue is interference 
between slices: unless a gap is added between EPI slices, there will be some reduction in 
image quality due to the RF pulse saturating neighbouring slices along with the target slice. 
One simple technique to reduce this interference is to collect the data in an interleaved 
fashion: all the odd slices of an image are collected first (e.g. 1,3,5..35) and then all the even 
slices (2,4,..36). This minimises interference between slices and allows you to sample more 
nuclei than if a slice gap is employed.  

3 fMRI task design 
The fMRI signal is very noisy. The signal of interest is typically only 1 to 10 percent 

of the overall signal. Therefore, great care must be taken when designing an fMRI 
experiment. The optimal experimental design maximizes the possibility of finding a reliable 
answer to the research question posed. In other words, the optimal design maximizes both 
statistical power and the power to draw inferences. In this section, two different types of 
experimental design used in fMRI research, namely block designs and event related designs 
will be described and their strengths and weaknesses regarding their ability to answer certain 
research questions will be explored. 
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3.1 Block designs 
The first type of experimental design is the so-called block design, also known as the 

boxcar (Aguirre & D’Esposito, 2000; Dale & Buckner, 1997; Donaldson & Buckner, 2001). 
This is the most commonly used experimental design. In a block design, two or more 
conditions are alternated in blocks. Each block will have a duration of a certain number of 
fMRI scans and within each block only one condition is presented. By making the conditions 
differ in only the cognitive process of interest, the fMRI signal that differentiates the 
conditions should represent this cognitive process of interest. This is the so-called subtraction 
paradigm (Aguirre & D’Esposito, 2000; Donaldson & Buckner, 2001). 

Using a block design has one main advantage. The increase in fMRI signal in response 
to a stimulus is additive. This means that the amplitude of the HRF increases when multiple 
stimuli are presented in rapid succession. When each block is alternated with a rest condition 
in which the HRF has enough time to return to baseline, a maximum amount of variability is 
introduced in the signal (see fig. 3.1). Therefore, block designs offer considerable statistical 
power (Aguirre & D’Esposito, 2000).  

 
Fig.3.1: The HRF function for a block design. The x-axis displays the number of volumes. One volume is 
collected every 2 seconds. The vertical axis displays the relative signal change in percentages, while the 
horizontal axis shows time. The tick marks along the bottom of the figure illustrate when fMRI is sampled. The 
red diamonds show the stimulus onsets. In this example, 5 stimuli spaced 1700ms apart are presented in each 
task block. Therefore, each task block lasts for 8.5 seconds alternated with 11.5 seconds rest allowing the HRF 
to return to baseline levels. Note the large signal change (>6%), as the signal from the successive stimuli in the 
block is fairly additive. 

However, because within each block, only one condition is presented, randomization 
of stimulus types is not possible within a block. This makes the type of stimulus within each 
block very predictable (Aguirre & D’Esposito, 2000). Another problem with block designs is 
related to the use of the subtraction paradigm (Aguirre & D’Esposito, 2000). The main 
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assumption of the subtraction paradigm is the idea of pure insertion. This means that a 
cognitive process can be added to a set of already active cognitive processes without affecting 
them. If this assumption fails, the difference in the fMRI signal between two conditions that is 
supposed to reflect the cognitive process of interest will in reality reflect the interaction 
between the cognitive process of interest and the already active cognitive processes. It is 
because of these problems associated with block designs that it is often very hard to draw 
solid conclusions from fMRI experiments using block designs, so block designs have a low 
power to draw inferences (Aguirre & D’Esposito, 2000). 

3.2 Event related designs 
The second type of experimental design is the so-called event related design (Aguirre 

& D’Esposito, 2000; Dale, 1999; Dale & Buckner, 1997; Donaldson & Buckner, 2001). In an 
event related design the course of the HRF following each stimulus presentation is estimated. 
The multiple HRF’s following a single type of stimulus can be averaged (Dale & Buckner, 
1997). This allows more real world testing, however, the statistical power of event related 
designs is inherently low, because the signal change in the BOLD fMRI signal following a 
single stimulus presentation is small (see fig. 3.2) (Aguirre & D’Esposito, 2000; Donaldson & 
Buckner, 2001). 

 
Fig.3.1: The HRF function for an event related design. The x-axis displays the number of volumes. One volume 
is collected every 2 seconds. The y-axis displays the relative signal change in percentages. The red diamonds 
show the stimulus onsets. In this example, 1 stimulus is presented every 20 seconds. Especially note the small 
signal change (less than 2%). 

A number of features have been critical in the development of event related designs. 
The first important feature is the invention of fast scanning techniques. In event related 
designs the course of the HRF following a single stimulus presentation is estimated. For this 
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estimation of the HRF to be accurate the BOLD fMRI signal must be measured at many 
different time points after presentation of the stimulus. This can only be done by fast scanning 
techniques (Donaldson & Buckner, 2001). The second important feature is the discovery that 
the BOLD fMRI signal is very sensitive. Neuronal activation lasting as short as 34 
milliseconds still produces a measurable change in the BOLD fMRI response. This means that 
even stimuli of very short duration can be used in an event related design (Dale & Buckner, 
1997; Donaldson & Buckner, 2001). The third and most important feature is the discovery 
that the BOLD fMRI shows a roughly linear response to repeated presentations of stimuli. 
When two or more stimuli are presented in rapid succession, the BOLD fMRI response 
increases roughly linearly. This is especially important in event related designs when stimuli 
are closely spaced together. When stimuli are closely spaced together there is an overlap in 
the BOLD fMRI responses. The discovery that the BOLD fMRI response increases linearly in 
response to successive presentations of stimuli, means that the HRF for an individual stimulus 
can be estimated despite the overlap in HRF’s for successive stimuli, which enables stimuli to 
be presented in rapid succession in an event related design (Aguirre & D’Esposito, 2000; Dale 
& Buckner, 1997; Donaldson & Buckner, 2001). 

A big issue when maximizing the statistical power in an event related design is the 
question of the optimal spacing in time between the onsets of successive stimulus 
presentations. It has been argued that to maximize statistical power the spacing between the 
onsets of successive stimulus presentations, also known as InterStimulus Interval (ISI) should 
be at least 15 seconds and that the statistical power decreases as the ISI decreases (see Dale, 
1999). However, recently it has been shown that the statistical power can increase with 
decreasing ISI’s (Dale, 1999). The key is the distinction between fixed ISI’s and variable 
ISI’s. When a fixed ISI is used the time between the onsets of successive stimuli is always the 
same. When a variable ISI is used the time between the onsets of successive stimuli varies. 
This variable ISI is also known as a latency jitter (Aguirre & D’Esposito, 2000; Dale, 1999; 
Dale & Buckner, 1997; Donaldson & Buckner, 2001). 
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Fig. 3.2: The HRF function for an event related design. The x-axis displays the number of volumes. One volume 
is collected every 2 seconds. The y-axis displays the relative signal change in percentages. The red diamonds 
show the stimulus onsets. Top panel : HRF for stimulus presentation with a fixed ISI of 4 seconds. Note that 
there is very little predictable variability in the response. B: HRF for stimulus presentation with a variable ISI 
and  a mean ISI of 4 seconds. Note the larger amount of predictable variability than in the fixed ISI condition 
yielding much improved statistical power. 

When stimuli are presented rapidly with fixed ISI of a short duration, there is almost 
no variability in the HRF (see fig. 3.2.A). Therefore, statistical power is low. If, however, a 
latency jitter is introduced, the variability in the signal increases (see fig. 3.2 B) and therefore 
statistical power increases. The crucial point is randomizing the duration of the ISI according 
to an exponential distribution (Dale, 1999). This results in many brief ISI’s which are 
alternated with a few long ISI’s in which the HRF can return to baseline. When a randomized 
variable ISI is used the statistical power increases with a decreasing ISI (at very short ISI’s 
this relation breaks down a bit) (Dale, 1999). It is important to note here however, that even 
though the statistical power of event related designs can be improved by above mentioned 
procedure, it is still inherently low compared to the statistical power of block designs. 

Despite the inherent low power of event related designs, there are a number of 
advantages in using this technique. The main advantage is that it allows for randomization of 
trials, since it is no longer necessary to group trials of the same type together as in a block 
design (Aguirre & D’Esposito, 2000; Donaldson & Buckner, 2001). The importance of 
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randomization is that potential confounds like habituation, anticipation and strategy effects 
are cancelled out. This increases the power to draw solid conclusions from an experiment and 
so increases the power to draw meaningful inferences. Another advantage of event related 
designs over block designs is that they allow for removal of certain trials (Donaldson & 
Buckner, 2001). For example, if a subject has to make a response to a stimulus, it can be 
desirable to be able to remove the HRF following the stimulus associated with the wrong 
responses post hoc. Finally, some experimental questions can not be answered using a block 
design (Donaldson & Buckner, 2001). If, for example, the response to an infrequently 
occurring stimulus appearing in a series of frequently occurring stimuli is the focus of the 
experiment (so-called odd-ball experiments), using a block design is impossible. When 
stimuli have to be presented in blocks, it is by definition impossible to have an infrequently 
occurring stimulus. These kinds of experimental questions have to be addressed using an 
event related design (Donaldson & Buckner, 2001). 

3.3 Summary of fMRI Design 
To summarize, block designs have high statistical power, but this is combined with a 

low power to draw inferences. On the other hand, event related designs have low statistical 
power, but they allow for more freedom in experimental design leading to a higher power to 
draw inferences. The obvious way to combine the strengths and weaknesses of both block and 
event related designs is to use block designs as an exploratory tool. For example, block 
designs can be used in a brief ‘localizer’ session that identifies the crucial brain regions for 
each individual. During subsequent event related designs, the hemodynamic responses within 
these regions can be identified.  

4 fMRI analysis. 
In a typical fMRI experiment, a measurement of the entire brain, known as a volume is 

collected every 2 to 4 seconds, resulting in hundreds of collected brain volumes per 
experiment for each subject. This means that the HRF is sampled at many different points in 
time. Every volume consists of a number of 3D slices (or slabs). These slices are typically a 
few millimetres thick. Each slice consists of a number of voxels (a 3D data points) and each 
voxel represents a data point on the HRF. In EPI, one 3D slice is collected at a time. 
Alongside the EPI volumes that display areas of the brain that are active in a given task 
(functional activity) often a high resolution T1 or T2 anatomical volume is also obtained. This 
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anatomical volume is used for spatial localization of the areas of the brain that are active in a 
given task. 

After obtaining the EPI data from the scanner, a number of stages of analysis must be 
performed on the dataset to finally end up with a map that displays the regions with 
significant functional activity. These stages can roughly be subdivided in a stage where the 
data is temporally adjusted, stages where the data is spatially adjusted and a stage of statistical 
analysis. The stage where the data is temporally adjusted is known as slice timing correction. 
The stages where the data is spatially adjusted are spatial realignment, spatial normalization 
and spatial smoothing. The last stage is the stage of statistical analysis (Frackowiak et al., 
1997). Each of these stages and their consequences for data interpretation will be considered 
separately in the following paragraphs. 

4.1  Slice timing correction 
In EPI every 3D volume of the entire brain consists of a number of 3D slices and these 

slices are each collected at a slightly different time. However, during the statistical analysis 
the assumption is made that the entire volume is collected at one point in time, so each voxel 
in a volume is assumed to represent the same moment in time. The result is that it might seem 
as though the same change in the HRF starts at an earlier time for slices that are acquired later 
in time than for slices that are acquired earlier in time (see fig. 4.1). 
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Fig. 4.1: The HRF over time. The red arrow represents the time of acquisition for an early slice in the volume, 
the blue arrow represents the time of acquisition for a later slice in the volume. When the assumption is made 
that the entire volume is collected at one point in time (as is done in the statistical analysis), it seems as though 
the HRF begins earlier for the slice that is acquired at a later time (blue curve) than for the slice that is collected 
at an earlier time (red curve). 

To solve this, the individual slices of a volume must be adjusted in the temporal 
domain. This is done by performing a temporal correction for the differences in acquisition 
time between the slices. This is referred to as slice timing correction (Smith, 2001b; Veltman 
& Hutton, 2001).First, a decision must be made as to which slice is going to be the reference 
slice. In other words, which time of acquisition of is going to be taken as the point in time that 
the entire volume of the brain was collected? Usually, either the first slice or the middle slice 
of the image of the brain is taken as the reference slice. After a certain slice has been chosen 
as the reference slice, all the other slices in the image of the entire volume of the brain are 
shifted in time by method of interpolation. The slices of a volume that are collected earlier in 
time than the reference slice are weighted with the same slice in the subsequent volume. The 
slices of a volume that are collected later in time than the reference slice are weighted with the 
same slice from the previous volume. For example, if a volume consists of 10 slices with the 
fifth slice being the reference slice, the second slice would be weighted with the second slice 
of the subsequent volume and the eighth slice would be weighted with the eighth slice from 
the previous volume. The reference slice is the only slice that is not shifted in time. The end 
result is that each voxel in each slice will approximately have the value that they would have 
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had, had they been obtained at the same point in time as the voxels in the reference slice. In 
other words, the same change in the HRF now starts at the same time for each voxel in each 
slice in a volume (Smith, 2001b; Veltman & Hutton, 2001). 

Which slice to choose as the reference slice depends on where in the brain interesting 
activations are expected to occur. As the difference in time of the phase shifted slice from the 
reference slice increases, the artefacts introduced by this phase shift also increase. This is 
basically because the interpolation method used to shift the slices of a volume in time is not 
perfect. The further in time slices have to be shifted, the larger the errors in the interpolation. 
Therefore, it is important to choose the reference slice as close as possible to the region where 
the interesting activations are expected to occur, so that the interesting activations are not 
confounded by errors of interpolation (Veltman & Hutton, 2001). 

4.2 Spatial realignment 
During an fMRI experiment, hundreds of EPI 3D brain volumes are collected per 

subject in a single time series. Even though subjects are usually instructed to move as little as 
possible inside the scanner, some head movement is unavoidable. The main result of head 
movements is that the same voxel does not to represent the same location in the brain 
throughout time (Brammer, 2001; Smith, 2001b). The statistical analysis, however, assumes 
that the same voxel does represent the same location in the brain throughout time. 
When the same voxel over time ‘moves’ from a location of the brain with a low fMRI signal 
to a location of the brain with a higher fMRI signal, while the statistical analysis assumes that 
this voxel represents the same location in the brain throughout time, it appears as though there 
was an increase in the fMRI signal for that voxel over time while in reality there was no 
increase in the fMRI signal. This has two potential consequences. Firstly, when movements 
are correlated with task performance, for example, if the head movement always occurs at a 
certain time after stimulus presentation, these false increases in the fMRI signal ultimately 
appear as false activations in the brain after the statistical analysis (Ashburner & Friston, 
1997; Ashburner & Friston, 2000; Brammer, 2001). Secondly, even when these intensity 
changes in the voxel caused by the movement of the head are not correlated with task 
performance they will add to the noise in the signal, thereby worsening the signal to noise 
ratio, which decreases the statistical power (Ashburner & Friston, 1997; Ashburner & Friston, 
2000; Brammer, 2001). 

The removal of movement effects is done for each subject separately and is referred to 
as spatial realignment or, alternatively, as within modality image coregistration (Ashburner & 
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Friston, 1997; Ashburner & Friston, 2000; Frackowiak et al., 1997). One brain volume 
(usually the first image in the time series) is taken as the reference volume. All the other 
volumes in the same time series are repositioned until they are in the same position as the 
reference volume. This repositioning is done using 6 parameters; x-translation, y-translation, 
z-translation, rotation around the x-axis, rotation around the y-axis and rotation around the z-
axis (these transforms are discussed in more detail in the next section). Only the position of 
the brain is changed and not the size or shape. This repositioning treats the head as a rigid 
object and is therefore also known as a rigid body transformation. 

For this realignment SPM2 uses a minimization algorithm for the least mean square 
difference between the volumes in the time series and the reference volume. This means that 
for each volume the squared difference between the volume in the time series and the 
reference volume is minimized (see Fig 4.2). The new value of the fMRI signal for a voxel 
after the realignment is estimated by interpolation from the values of the fMRI signal of 
neighbouring voxels (Ashburner & Friston, 1997; Ashburner & Friston, 2000; Frackowiak et 
al., 1997). 

A B C D 

 
Fig 4.2: Illustration of the squared difference between the volume in the time series and the reference volume. A: 
The reference volume. B: the volume that has to be adjusted due to head movement. C: The difference between A 
and B. D: The squared difference(variance) between A and B. 

It should be noted that realignment not only adjusts for actual head movement, but 
also for apparent movement. As the fMRI scanner heats up during a session it appears as 
though the head drifts slightly. This is an artefact arising from the scanner and is also 
corrected for by realignment. 

Unfortunately, there are a number of limitations of realignment. The first limitation is 
that, when the head movements are too large, the minimization algorithm might get stuck in a 
local minimum (Ashburner & Friston, 2000; Brammer, 2001). Usually, the data of subjects 
with movements that are too large will have to be removed. The second limitation is that the 
brain is not rigid. Heart-beat and respiration cause variations in shape and size of the brain. 
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Usually, this source of movement is ignored (P. Liddle, personal communication, fall, 2002). 
The third limitation is that even perfect realignment will not remove all movement related 
variance (Ashburner & Friston, 2000; Brammer, 2001; Frackowiak et al., 1997; Veltman & 
Hutton, 2001). The problem is that, in case of a movement, the image not only moves, but 
also fundamentally changes. The time it takes to acquire one image of the brain is usually 
shorter than the time it takes for the hydrogen nuclei to relax after the radiofrequency pulse. 
This means that, by the time the next radiofrequency pulse occurs, there is still a residual 
effect from the previous radiofrequency pulse on the hydrogen nuclei. This is not really a 
problem when the head does not move in the scanner, because in that case the residual effect 
from the previous radiofrequency pulse is predictable. However, when the head does move, 
the residual effect from the previous radiofrequency pulse on the hydrogen nuclei becomes 
unpredictable. One way to remove all movement related variance is to use a linear regression 
to remove any variance in the signal that is correlated with both movements during the present 
scan and movements during the preceding scan. However, when the movements are correlated 
with task performance, there is a risk of accidental removal of interesting activations 
(Ashburner & Friston, 2000; Brammer, 2001; Frackowiak et al., 1997; Veltman & Hutton, 
2001). The fourth limitation of realignment is that a movement also changes the overall 
magnetic field. Remember from the second section in this report that inhomogeneities in the 
magnetic field result in a decrease in the fMRI signal. Through a process known as 
‘shimming’ every attempt is made to make the overall magnetic field as uniform as possible. 
However, when the head moves the overall magnetic field changes. Shimming is usually only 
done at the beginning of a scanning session and head movements therefore create new 
inhomogeneities in the overall magnetic field, leading to the overall magnetic field no longer 
being uniform and consequently to loss of signal in some areas of the brain. The fifth 
limitation of realignment is that the interpolation method used to estimate the new value of 
the fMRI signal of a voxel after the realignment is not perfect. This leads to so-called 
interpolation errors in the signal (Ashburner & Friston, 2000; Veltman & Hutton, 2001). 

Realignment computes a spatial transform to generate a stabilized image of the brain. 
As mentioned, head movements in the scanner result in changes that a simple rigid-body 
transformation can not correct. For example, the head movements alter the shim of the 
magnet, so head motion causes changes to the intensity of some regions of the image. 
Andersson and colleagues have added an EPI unwarping function to SPM2 that reduces this 
movement-by-inhomogeneity interaction. This software compensates for the changes in 
image brightness that result from head movements. This unwarping stage can be selected at 
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the same time as the realignment. This stage is computationally intensive, and typically 
requires more processing time than all other spatial preprocessing steps combined.  

Clearly, motion creates serious consequences for fMRI data analysis. As we have 
discussed, a number of clever techniques have been devised to minimise motion artefacts. 
However, these techniques will not completely eliminate motion artefacts, in particular if the 
head movements are large or sudden. Therefore, if possible, head movement should be 
minimized, for example, by using a head constraint. Furthermore, tasks should be designed to 
minimize the risk of task correlated movement.  

4.3 Spatial normalization 
During an fMRI experiment, usually, data is collected for several subjects. However, 

each individual’s brain differs in orientation, size and shape relative to other members in the 
group. Usually, the orientation, size and shape of the brains of individual subjects are changed 
to match the orientation, size and shape of a standard brain (Ashburner & Friston, 1997; 
Ashburner & Friston, 2000). There are a number of reasons why making these different brains 
more alike in size and shape is desirable. Firstly, when the same voxels in the brain of each 
subject represents the same anatomical location, comparisons between different subjects are 
possible (Ashburner & Friston, 1997; Ashburner & Friston, 2000; Frackowiak et al., 1997). 
Secondly, when different brains are mapped to a certain standard brain, communication of the 
anatomical loci of interesting effects between different research groups becomes less arbitrary 
(Jenkinson, 2001). This matching of individual brains to a standard brain is known as spatial 
normalization (Ashburner & Friston, 1997; Ashburner & Friston, 2000; Frackowiak et al., 
1997). 

The orientation, size and shape of the brains of all the subjects are changed to match 
the orientation, size and shape of a standard brain. This standard brain is also known as a 
template (Frackowiak et al., 1997). Obviously, choosing the right template is important. 
Optimally, the template should represent the brain of most subjects. Often, the template is 
based on an average of many different subjects (Smith, 2001a). However, different scanners 
have unique characteristics and therefore research groups often create their own template. 
Even though this improves the match of the individual brain to the template for the research 
groups, it makes comparisons between research groups more tricky. 

The matching of the orientation, size and shape of each individual to the orientation, 
size and shape of the template is done using 12 linear parameters; x-translation, y-translation, 
z-translation, roll, pitch, yaw, resizing (growing or shrinking) in three dimensions and three 
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shear (skewing) deformations. Each of these linear parameters changes the entire brain in the 
same way and these are also known as affine parameters (see Figure 4.3). Note that any three 
points that are co-linear (a straight line can be drawn through all three points) will remain co-
linear after these linear transforms. In addition, each linear transform influences the entire 3D 
volume. As a result, linear transforms are fairly robust: small regions of signal dropout rarely 
have adverse influence on linear transforms as the intact portions of the image constrain the 
transform. However, for the same reason, linear transforms are limited in how accurately they 
can match two brains: while the overall size and orientation will be matched, local features 
will often not be precisely aligned. 

 
Fig 4.3: Linear transforms used for realignment (motion correction), coregistration and the first stages of 
normalization. The top row shows images prior to the transform, with the image at the bottom showing the result 
of the transform. Note that each transform can be applied in any of three dimensions (e.g. the image can be 
translated in the anterior-posterior, superior-inferior or left-right dimension). Note that realignment does not 
typically implement or require shear transforms. 

In sum, linear transforms offer a robust but rudimentary match between an 
individual’s scan and a template image. Therefore, packages like SPM2 and AIR typically use 
linear transforms for the initial normalization and subsequently apply nonlinear transforms to 
offer a more accurate normalization. For example, SPM2 applies a set of nonlinear cosine 
basis functions to improve the normalization. Figure 4.4 shows how nonlinear functions can 
be used to aid normalization. These enable local changes in the brain, also known as warping, 
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and potentially offer a better match to the template. A minimization algorithm for the least 
mean square difference between the brain volumes of the subject and the template volume is 
used and the new value of the fMRI signal for a voxel after the normalization is estimated by 
interpolation from the values of the fMRI signal of neighbouring voxels.  

 
Figure 4.4: Nonlinear transforms. The image on the left cannot be made to accurately match the image on the 
right using only linear transforms. However, applying to nonlinear basis functions the image can be accurately 
normalized. These transforms are shown in the middle of the figure: one function crushes information near the 
vertical center of the image, while the other function crushes information near the horizontal center.  

Obviously, some constraints have to be imposed on this minimization procedure, since 
a large difference in the amount of warping between adjacent areas can lead to unrealistic 
results. The constraint usually imposed is that the overall warp of the brain has to be smooth. 
Practically, this means minimizing the difference in the amount of warping between adjacent 
brain areas. The result is that normalization matches the overall orientation, size and shape of 
the brain of each subject to the template, but not the individual sulci. Usually, this overall 
matching of normalization is not considered a problem, since precise matching of each 
individual brain to the template would be unrealistic (Ashburner & Friston, 1997; Ashburner 
& Friston, 2000; Frackowiak et al., 1997; Jenkinson, 2001). 

4.4 Spatial coregistration 
In image processing terms, ‘coregistration’ applies to any method for aligning images. 

By this definition, both motion correction and normalization are forms of coregistration. 
However, neuroimagers tend to use the term ‘coregistration’ to refer to alignment of images 
from different modalities. For example, matching the low resolution T2* fMRI scan to the 
high-resolution T1-weighted anatomical scan from the same individual. 

In theory, intermodality coregistration is simpler than normalization: there should 
always be a perfect correspondence between different scans from the same individual (e.g. the 
same sulcal pattern should exist in both scans). However, note that algorithms implemented 
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by SPM2 during motion correction and normalization assume a similar relationship between 
tissues in the different scans. For example, in normalization, a T1 scan will be matched to a 
template image with T1-contrast: with air and water (cerebral spinal fluid) appearing dark and 
white matter appearing bright. The difference-squared cost function will fail when this 
relationship is broken. For example, consider a T1 scan and a T2 scan from the same 
individual that are perfectly aligned with each other: the difference-squared cost function will 
indicate major difference between these images, as the air is dark in both images, but the 
water is bright in the T2 but dark in the T1 scan. In this case, the automated algorithms used 
by SPM’s normalization will result in images that do not accurately match each other. 

Therefore, inter-modality coregistration can not rely on a simple cost function that 
simply relies on the raw difference in intensity between the two images. There are two 
approaches that have been implemented to tackle this problem. The first technique simply 
normalizes each image to a corresponding template image (e.g. normalizing the T1 scan to a 
T1 template, and the T2* scan to a T2* template). Next, the images are segmented into grey 
and white matter maps, and these resulting maps are coregistered to each other using a 
standard difference-squared cost function. A second technique relies on mutual information 
theory: this simply relies on the concept that different material will have different intensities 
within a scan modality (e.g. air will have a consistent brightness in the scan, and this 
brightness will be different from some other materials, such as white matter). This method is 
illustrated in Figure 4.5. 
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Figure 4.5: Intermodality image coregistration using mutual information theory. Consider two MRI scans using 
different sequences (Tz-weighted and Ty-weighted images) of the same individual. If these images are accurately 
aligned (top left) than the resulting image histogram will show very little noise (lower left). On the other hand, if 
the images are not aligned (top left), than the resulting joint histogram (lower right) will show much more noise. 
Therefore, we can iteratively apply linear transforms and see if they influence the entropy between the two 
images, eventually resulting in an accurate alignment. 

4.5 Spatial smoothing 
An important preprocessing step is to blur the fMRI data prior to statistical analysis. 

At first glance, the idea of spatially smoothing data seems counterintuitive. After all, blurred 
data clearly degrades the spatial precision of the image. However, there are a number of 
important reasons for smoothing. Firstly, smoothing increases the signal to noise ratio in the 
fMRI signal by removing the noise present in the high spatial frequencies. In fMRI the effects 
of interest are produced by changes in blood flow. Changes in blood flow are expressed on a 
low spatial frequency of several millimetres. Noise is usually expressed on a higher spatial 
frequency. Secondly, smoothing removes small frequency differences, so comparisons across 
subjects are made easier. Thirdly, smoothing helps to satisfy the requirements for applying 
Gaussian Field Theory to correct for multiple comparisons in the ensuing statistical analysis. 
Finally, smoothing makes the data more normally distributed (Smith, 2001b).  

Smoothing is performed by convoluting the 3D volume with a 3D Gaussian kernel. 
Basically this means that every data point is multiplied by a curve in the shape of a 3D normal 
distribution. The shape of the 3D smoothing curve should match the spatial shape of the 
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signal, so that frequencies matching the frequencies of the 3D smoothing curve are 
emphasized and frequencies not matching the frequencies of the 3D smoothing curve are 
filtered out. The shape of the smoothing curve is defined by the Full Width Half Maximum 
(FWHM). This is the width of the curve at half of the maximum and is usually defined in 
millimetres. The FWHM chosen for the smoothing curve is typically two or three times the 
voxelsize. In our own work, we usually collect data with a resolution of around 3x3x3 mm, so 
we tend to choose an 8 mm FWHM for our smoothing filter. However, it should be noted that 
the smoothing acts as a spatial filter – a FWHM of 8 mm is tuned to detect clusters of around 
this size. Therefore, if you have an a priori prediction of the size of the region you hope to 
measure, you can set your smoothing filter to maximize signals for that size of region (for 
example, if you wanted to examine the tiny superior colliculi you would want to select a 
smaller smoothing filter than if you were interested in a larger region such as early visual 
cortex). The end result of this spatial smoothing is therefore that high spatial frequencies in 
the signal are filtered out while low spatial frequencies in the signal are emphasized (Smith, 
2001b). 

4.6 Statistical analysis 
After the fMRI volumes have been temporally and spatially adjusted, they are ready 

for the statistical analysis. In the statistical analysis a test is performed to determine which 
voxels in the brain are significantly activated by a certain type of stimulus. In the most 
commonly used type of analysis, the General Linear Model (GLM), the time series of each 
voxel (HRF over time) is analyzed separately. This separate analysis of the time series of each 
voxel means that the analysis of fMRI datasets is univariate (Frackowiak et al., 1997; Holmes 
& Friston, 1997; Lange, 2000; Smith, 2001a; Worsley, 2001). 

The first step in the statistical analysis is to create a model to predict the observed 
data. In the GLM, a model is created that predicts the observed data according to the 
following formula for linear regression: 

Y = X · β + ε 
In this model Y is a matrix which has a column for each voxel and a row for each fMRI scan. 
This is the matrix with the observed fMRI values. X is the design matrix (see Fig 4.4 for an 
example) which has a row for every scan and a column for each predictor variable. β is the 
parameter matrix and ε is the matrix of normally distributed error terms (Frackowiak et al., 
1997; Holmes & Friston, 1997; Lange, 2000; Smith, 2001a; Worsley, 2001). In this first step 
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of the statistical analysis therefore two things have to be done. First the design matrix has to 
be specified and then the parameter matrix has to be estimated. 

In the design matrix the general shape of the HRF over time is modelled. On the most 
simple level each column in the design matrix reflects a certain stimulus function (often an 
on/off block curve, stimuli are either present or they are not) smoothed with the HRF. 
However, other predictor variables can also be modelled in the design matrix for example, 
covariates like task performance and confounds like slow drifts. 

After the design matrix has been modelled, it has to be fit separately to the time course 
of each voxel. This is the estimation of the parameter matrix. For each column in the design 
matrix a parameter is obtained that optimizes the fit of the overall waveform modelled in the 
column of the design matrix to the observed data for each voxel. To clarify, the design matrix 
predicts the overall shape of the HRF over time and the parameter matrix is estimated to fit 
this overall shape of the HRF to the specific time course of each voxel (Frackowiak et al., 
1997; Holmes & Friston, 1997; Lange, 2000; Smith, 2001a; Worsley, 2001). 

After the model has been created to predict the observed data, it is time for the second 
step in the statistical analysis. In the first step of the statistical analysis a predicted HRF (the 
design matrix multiplied by the parameter matrix) has been obtained for each column in the 
design matrix (each predictor variable) and each voxel in the brain. Now a t test is used to 
determine for each voxel separately whether a specific linear combination of columns in the 
design matrix is significantly different from zero. Which linear combination of columns in the 
design matrix is used is determined by a setting up contrasts. If the example is used of the first 
column in the design matrix containing the predicted HRF for the stimulus function of visual 
stimuli and the second column in the design matrix containing the predicted HRF for the 
stimulus function of auditory stimuli, the first column would be assigned a contrast of 1 and 
the second column would be assigned a contrast of -1 to test for each voxel in the brain 
whether the response to the visual stimuli is significantly larger than the response to the 
auditory stimuli (Frackowiak et al., 1997; Holmes & Friston, 1997; Lange, 2000; Smith, 
2001a; Worsley, 2001). 

The end result of the statistical analysis is a statistical map that shows which voxels 
are significantly activated given a certain linear combination of columns in the design matrix 
(see fig. 4.2). This statistical map can be used as an overlay for an anatomical image to 
display where in the brain a significant increase in activation occurs in response to a task 
manipulation. 
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Fig. 4.6: Example output of the statistical analysis using a widely used program SPM. On the top left the areas 
of significant activation are shown, with the red arrow indicating the selected voxel. On the bottom left the 
predicted (solid line) and the observed (dashed line) time course of the activation of this selected voxel is shown, 
especially not the good fit between the predicted and the observed HRF. On the right, the design matrix and the 
contrasts used to obtain the areas of significant activation are shown. In this example two stimulus types (or 
conditions) are compared averaged over nine subjects. 

 

4.7 Choosing a statistical threshold 
This section discusses methods for selecting a statistical threshold to apply to your 

data. In particular, we discuss two related problems. First, how do we decide on a statistical 
threshold that maximizes our chance of findings real results. Second, fMRI analysis typically 
results in hundreds of thousands of statistical tests, so we need to control for ‘familywise 
error’ (unless we correct for multiple comparisons, we will tend to make many false alarms 
when we compute many tests). 

Statistics measure the probability of an event occurring by chance. Ultimately, we 
make a decision regarding whether an event represents simply random noise or reflects a real 
effect. For example, if we are testing to see if a drug treats cancer, we will conclude either that 
the drug has an effect or that it has no influence.  
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Figure 4.7: When we conduct statistical tests we decide either that there is no effect (i.e. we accept the null 
hypothesis Ho is true) or we claim that our conditions influence the dependent variable (we reject the null 
hypothesis). In reality, the null hypothesis is either true or false, so we can make two kinds of correct 
judgements: a ‘hit’ (where we correctly identify a that our conditions have an effect) or a correct rejection 
(accurately reporting that there is no effect). On the other hand, we can make two types of error, a false alarm 
(Type I error, where we incorrectly report an effect) and a ‘miss’ (Type II error, where we fail to detect a real 
effect). The ability to make hits is often referred to as ‘power’. 

There are three factors that directly influence our ability to detect effects. First, the 
size of the treatment effect relative to noise. Second the number of observations (e.g. number 
of stimuli each person sees in an fMRI study, as well as the number of participants in a group 
fMRI study). In other words, it is easy to detect big effects, but hard to detect subtle effects. 
Unfortunately, fMRI signals tend to be noisy, and the effect size is very small: moving ones 
hand in the scanner might increase the brightness of the motor hand area by around 5%, while 
the brightness varies due to measurement noise, motion artefacts and cardiac gating. 
Obviously, more subtle effects are harder to find (e.g. the activation seen when someone sees 
a bright light will most likely be larger and more intense than for a very dim stimulus). One 
technique to optimize the small signal is to use block designs (as discuss in section 3.1). 
Increasing your sample size also has a dramatic effect on your statistical power. For example, 
collecting lots of trials with each participant and increasing the total number of people tested 
in an fMRI group study. However, fMRI scans are expensive, and testing people across long 
sessions can induce fatigue. The final way we can influence statistical power is to adjust our 
criterion, often referred to as the Alpha level. 

An inherent problem with applying statistics to noisy data is that we will routinely 
make errors. Traditionally, we can make a trade-off: we can prevent making false alarms 
(claiming effects that in reality are random noise) if we are willing to also miss many real 
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effects. For example, if we set an alpha level of p < 0.1 we will often detect real effects, but 
we will report false alarms 10% of the time. On the other hand, if we set a more conservative 
alpha of p < 0.001 our false alarm rate will be low (one in a thousand), but we will often miss 
real effects. 

Figure 4.8 illustrates how adjusting the statistical threshold will influence our 
conclusions from an analysis. The concept of selecting a statistical threshold is a general 
problem in statistics. Typically, we select conservative thresholds when we fear the 
consequences of false alarms (e.g. failing to detect harmful side-effects of a new drug), while 
liberal thresholds are applied when it is important to identify real effects (e.g. identifying if a 
drug treats a deadly disease).  

 
Figure 4.8: The left panel shows how adjusting our statistical threshold will influence our conclusions. The top 
and bottom images show the same data, with the top image showing a liberal statistical threshold ( Z>2.0), 
while the bottom image shows a more conservative threshold (Z>5.0). Note that the liberal test identifies more 
regions, but has a higher incidence of false alarms (suggesting an area is activated when in fact its activity was 
simply noise). The right panel illustrates the concept of statistical significance: the L/R and A/P axis show 
different locations in a slice (from left to right and anterior to posterior) while the color indicates the Z-score at 
each location. Changing our statistical threshold is analogous to changing the water level, exposing more or 
fewer peaks. 

A very important consideration for neuroimaging data is the tremendous number of 
statistical tests we compute for each comparison: we typically compute a statistical test for 
each and every voxel in the image. As a typical brain has a volume of about 2550cc, one will 
compute almost 100,000 tests if the voxels are 3x3x3mm (or over 300,000 tests if the data is 
has a resolution of 2x2x2mm). If 100,000 voxels are tested at a probability threshold of 5% 
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than we should expect five thousand voxels will erroneously appear significant activation. In 
other words, the chance of ‘familywise error’ is exceedingly high. These apparent activations 
by chance are known as false positives. One way to correct for these false positives is by 
applying a Bonferroni correction. In a Bonferroni correction the probability threshold is 
divided by the number of tests. The probability threshold for each voxel then becomes 
0.05/100,000 = 0.0000005%. While this stringent correction guards against familywise error 
(we only have a 5% chance of making a false alarm anywhere in the entire brain), we will 
often fail to detect real effects (i.e. we will have very little statistical power). For example, 
with an uncorrected 0.05 threshold we will detect any signal that has a z-score greater than 
1.64 (this can be found with the Excel formula =NORMINV(0.05,0,1)). On the other hand, 
the Bonferroni correction will only detect effects with a z-score greater than 5 
(=NORMINV(0.0000005,0,1)). As a consequence, applying a Bonferroni correction will 
result in not detecting some ‘real’ activations.  

Considering the massive number of tests performed during neuroimaging, how can we 
preserve the most statistical power (our ability to find real effects) while minimising our 
chance of making false alarms. One simple but expensive solution is to run a large number of 
participants. However, SPM and other brain imaging packages are beginning to implement a 
number of sophisticated techniques that allow us to choose reasonable statistical thresholds. 
Solutions include using a minimum cluster size, utilizing Gaussian field theory, false 
discovery rate correction and region of interest analysis. 

In the days of SPM96 (around 1996), one common approach was to set an uncorrected 
threshold of p < 0.001 but only examine regions where a large number (e.g. 32) contiguous 
voxels that reached this threshold. The concept is that if a large number of neighbouring 
observations all show the same behaviour, then the corresponding activity was unlikely to 
represent noise. One problem with this method is that you will fail to identify real but small 
modules in the brain. A more fundamental challenge is that neighbouring voxels are not really 
independent samples. First of all, the smoothing that is applied to the data ensures that nearby 
voxels will show a similar signal. Furthermore, interpolation during all the stages of spatial 
preprocessing and the initial MRI reconstruction mean that neighbouring voxels are not really 
independent samples. Fortunately, clever statisticians have worked out that it is possible to 
accurately estimate the number of independent tests computed on spatially smoothed fMRI 
data. Hence, software like SPM2 utilizes Gaussian Random Field theory to accurately 
estimate the number of independent samples in your data. 
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The Gaussian Random Field theory assumes that the fMRI signal at each voxel has a 
normal spatial distribution. When the data has been spatially smoothed with a Gaussian kernel 
(see section 4.4) this assumption will generally be valid. In this correction the probability 
threshold is not divided by the total number of voxels, but instead by the number of 
independent resells (resolution elements) and this correction is therefore much less stringent 
(Frackowiak et al., 1997; Poline et al., 1997; Lange, 2000; Smith, 2001a; Worsley, 2001). For 
a description of how the Euler characteristic can be used to set a realistic threshold corrected 
for familywise error, see Matthew Brett’s outstanding web page on the topic (www.mrc-
cbu.cam.ac.uk/Imaging/Common/randomfields.shtml). Thankfully, when you choose ‘FWE’ 
from SPM2’s results section, it will automatically compensate for Familywise Error that takes 
into account the influence of the resels in your data. 

SPM2 introduces a new way to control for multiple comparisons. SPM labels this 
‘FDR’, which is an abbreviation of ‘False Discovery Rate’. While Bonferroni correction 
attempts to correct for the number of false alarms we will make in all samples, FDR attempts 
to control the ratio of hits to false alarms. In other words, a FDR rate of 5% will result in 
about 5% of ‘activated’ voxels being errors. What is remarkable about FDR is that it is 
sensitive to the amount of signal that is actually in your data. If your dataset is completely 
noise (with Z-scores appearing in a normal distribution), then FDR will be just as stringent as 
FWE. On the other hand, if your measurements have a real signal, the resulting Z-scores will 
not be a normal distribution – the real signal will appear as a shifted distribution. Therefore, 
FDR adjusts the criterion used based on the amount of signal present in your data. Just like 
other statistical measures, FDR will be better at detecting large, robust signals. However, 
FDR does offer a principled way to detect smaller signals while still controlling for false 
alarms. If you do use FDR, it is important to remember the implications of this correction. For 
example, consider a study where an FDR of 5% reports 100 activated voxels: in this example 
around 5 of the ‘activated’ voxels are in fact false alarms. On the other hand, if you computed 
a FWE correction at 5% and found 50 voxels active, you can be reasonably confident that all 
of those are real activations (in fact, there should only be a 1/20 chance of that you have made 
just one false alarm). FDR is a fairly radical change in the way people think about statistics. 
Figure 4.9 attempts to illustrate how FDR works.  
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Figure 4.9: A brief introduction to false discovery rate. Consider a study where 1000 voxels are collected and 
we compute the Z-score for each voxel. If there is no signal in the data, we can expect the the Z-scores will fall 
into a nice normal distribution (left panel). Compare this to a situation where 150 of the voxels show a real but 
small signal (right graph, with blue line showing voxels with signal). Note that due to variability, there is still 
considerable overlap between the signal and the noise. In both cases, the critical values for the uncorrected t-
test p < 0.05 is 1.64 (shown as a *) while the Bonferroni corrected threshold is 3.89 (the ^ symbol). On the other 
hand, the threshold provided by the false discovery rate is sensitive to the shape of the observed data: in the 
simulation on the left the value will be 5.89 (! Symbol) while on the right the value will be 2.5. In this simulation, 
the uncorrected t-test makes 50 errors in the situation where there is no signal, while the Bonferroni and FDR 
tests have a rate of just 0.05 (only making an average of one error every twenty simulations). For our simulation 
on the right, the uncorrected test made 148 hits, but 42 false alarms. The FDR test achieved 129 hits with just 6 
false alarms, and the Bonferroni correction detected only 27 hits but retained a false alarm rate of 0.05. 

A final way to improve your statistical power is to reduce the number of comparisons 
you make. Instead of examining the entire brain, you can examine just a small region. This 
approach can be referred to as the ‘volume of interest approach’. This is especially useful 
when you have an a priori reason for believing that a region of the brain is involved with a 
task. With SPM2, there are two approaches you can either do a ‘small volume correction’ (or 
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‘SVC’ in SPM2-speak), where you only examine the relatively small number of voxels in a 
given region, or ‘region of interest’ analysis as implemented by Matthew Brett’s MarsBar 
software. With a region of interest analysis you compute the average activity within the 
region, creating a single sample and therefore computing just a single test. While individual 
voxels are noisy, pooling data across a functional module’s worth of voxels can give a better 
estimate of that region’s activation. Therefore, region of interest analysis benefits both by 
reducing the number of comparisons and hopefully making a cleaner estimate of actual 
activation. Of course, these volume of interest approaches are only as accurate at the regions 
you provide for analyses. One effective approach is to run a localizer scan to find the 
approximate location of a module in each individual’s brain, and then use this region to look 
for more subtle effects in future scanning sessions. Another technique is to use a stereotaxic 
region previously identified. For example, Danish human brain project offers regions of 
interest for the motor hand area (hendrix.imm.dtu.dk/services/jerne/ninf/voi/hand_area.html) 
and other common regions. Note that you should not use the same data to both functionally 
define the region of interest and compute a region-of-interest analysis (the region should be 
defined independently from the data you plan to test). 
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