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We report on differences in sensitivity and false-
positive rate across five methods of global normaliza-
tion using resting-state fMRI data embedded with sim-
ulated activation. These methods were grand mean
session scaling, proportional scaling, ANCOVA, a
masking method, and an orthogonalization method.
We found that global normalization by proportional
scaling and ANCOVA decreased the sensitivity of the
statistical analysis and induced artifactual deactiva-
tion even when the correlation between the global
signal and the experimental paradigm was relatively
low. The masking method and the orthogonalization
method performed better from this perspective but
are both restricted to certain experimental conditions.
Based on the results of these simulations, we offer
practical guidelines for the choice of global normaliza-
tion method least likely to bias the experimental
results. © 2002 Elsevier Science (USA)

INTRODUCTION

In a typical fMRI experiment, there is extra varia-
tion in the mean signal level between individual scans
in addition to the one due to alterations in blood flow
caused by the activation paradigm. Potential sources of
such variation include physical processes (head move-
ments, instabilities of the scanner baseline) and under-
lying physiological processes: pulsation, breathing, and
swallowing, as well as complex interactions between
the activation signal and other processes (e.g., induced
vasodilation—see Petersson et al., 1999 for a review).
Modeling the variation in the signal intensity across a
large number of voxels is termed global normalization.

In the context of the General Linear Model (GLM)
this variation can be accounted for in two ways: as an
additive term in the model (ANCOVA), representing a
covariate of no interest (Friston et al., 1990),

Y �t� � � � � h�t� � � �c�t� � G�t�� � � �t� , (1)
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or as multiplicative or ratio scaling (Fox et al., 1984),

Yi�t� � G�t���i � �ih�t� � �ic�t� � �i�t�� , (2)

where Yi is the signal intensity for voxel i, �i repre-
sents the baseline intensity, h(t) denotes the vector of
covariates of interest reflecting task induced effects,
c(t) the vector of covariates of no interest, �i and �i are
the constant vectors of parameter estimates, G(t) is the
term representing the global variation estimated as
the average intensity of the intracranial voxels (global
signal, Desjardins et al., 2001), and �i(t) represents the
error term. One major difference between the two ap-
proaches is that proportional scaling scales the error
variance (�i (t)) whereas ANCOVA does not. While no
general consensus has been reached regarding the
most appropriate method, the variance stabilizing
properties provide an advantage for proportional scal-
ing over the ANCOVA approach (Holmes et al., 1997).
The proportional scaling method is widely used for
fMRI data (ANCOVA is not directly implemented in
the fMRI module of spm99). However, we acknowledge
that this preference is based on expert opinion1 rather
than published research. For this reason we have in-
cluded ANCOVA in our study.

The widely used SPM99 package (http://www.fil.
ion.ucl.ac.uk/spm) offers two ways of carrying out
global normalization of fMRI data: grand mean session
scaling and proportional scaling. Grand mean session
scaling is a simple adjustment designed to remove only
intersession variance in the global signal due mainly to
changes in the gain of scanner amplifiers. In global
normalization by proportional scaling, the intensity for
each voxel in a scan is effectively divided by the global
signal for that scan. This method attempts to remove
both intersession (session-to-session) and intrasession

1 This statement is based on a search performed on the spm dis-
cussion list at http://www.jiscmail.ac.uk/archives/spm.html: J. B. Po-
line (25/09/98); K. J. Friston (22/12/98).
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(scan-to-scan) variance in the global signal. The central
assumption of this method is that global variation is
not due to the changes produced by the activation
paradigm. The global variation can be considered an
orthogonal nuisance variable (G(t) and h(t) are not
correlated) that can affect only the error term in the
model and which reduces the sensitivity of the subse-
quent statistical analysis if not accounted for. Thus the
global signal is used as the baseline against which to
measure activation (or deactivation). These assump-
tions seem reasonable, given that changes in cerebral
blood flow produced by activation tasks are subtle and
are frequently confined to a small number of focal
regions. This probably accounts for the popularity of
the technique. However, when the assumptions are
violated, the global signal becomes a confound; i.e.,
inclusion or exclusion of the global signal in the model
will affect the relationship between the data and the
variables of interest. To include this possible situation
in the GLM we expanded G(t) as follows:

G�t� � G � Gv�t� � A�t� � B�t� , (3)

where G represents the mean global signal, Gv(t) rep-
resents the variation around the mean that is not cor-
related with the covariates of interest (h(t)), A(t) is the
variation around the mean correlated with h(t) due to
task induced activation, and B(t) represents the varia-
tion around the mean correlated with h(t) due to other
underlying physical or physiological processes. In prac-
tice, is not possible to estimate the separate contribu-
tion of different terms in B(t); however, while some
sources of variance are best removed from the global
variation (e.g., task correlated motion artifacts; Freire
et al., 2001), part of this contribution is likely to ex-
press genuine global variation that should be pre-
served in the estimated global signal. Possible mecha-
nisms able to generate correlation between the global
signal and the paradigm are described by Aguirre et al.
(1998).

Gv(t), A(t), and B(t) each can be further expressed as
a sum of two terms: one representing variation around
the mean expressed in the activated voxels (denoted by
GVa(t), Aa(t), and Ba(t), respectively) and the other one
representing variation around the mean in the nonac-
tivated voxels (denoted by GVn(t), An(t), and Bn(t), re-
spectively). The inclusion of An(t) may seem inappro-
priate. Its inclusion is justified by the observation that
the identification of activated voxels pertains to the
method used to analyse the data. When certain voxels
are labeled as nonactivated via a particular analysis
method, the possibility that these voxels can express
task-related variations in the intensity values is not
excluded. Significant correlations between global and
local activity may arise as a result of relatively strong
and/or widespread activation (Aguirre et al., 1998; Des-

jardins et al., 2001). This can result in two unwanted
effects when global normalization is employed: under-
estimation of the true levels of focal activity and the
production of artifactual deactivations due solely to the
overcorrection of global variation.

Other global normalization methods were recently
introduced to account for the correlation between the
global signal and the paradigm. Andersson (1997) has
proposed a more complex model for global normaliza-
tion whereby the global variations are calculated inde-
pendently of local changes in blood flow. This method,
which calculates the global signal while “masking” out
focal activations, was successfully applied to PET data
from an experiment involving a large visual activation.
The masking method attempts to remove GVa(t) �
Aa(t) � Ba(t) from the calculation of the global signal by
assuming that for spatially localized activations
Aa(t) � Ba(t) �� An(t) � Bn(t). For the nonactivated
voxels, any possible correlation between the global sig-
nal and the paradigm induced by processes other than
the task induced activation is accounted for. The pro-
cedure is applied iteratively: at each step the activation
pattern captured in the statistical parametric map is
masked out and the global signal is calculated as the
average intensity of the remaining voxels. This new
global signal is then used for proportional scaling (or
ANCOVA) and the number of activated/deactivated
voxels is calculated (Puncorrected � 0.05). A saturation
effect for this number is then determined. A potential
problem for this method arises for data sets with spa-
tially extended activation, where the number of voxels
remaining after the masking process may be too small
to estimate global changes in the signal intensity. To
our knowledge this method has not previously been
tested for fMRI data.

The orthogonalization method as proposed by Des-
jardins et al. (2001) performs an adjustment of the
global signal so that it becomes orthogonal to any non-
constant column of the design matrix. The correlation
coefficient between the global signal and the noncon-
stant columns in the design matrix is effectively forced
to be zero. The method corrects for A(t) in all voxels,
but attributes all the shared variance expressed by B(t)
to the covariates of interest. As we pointed out above,
not all this variance should be discarded from the
global signal. The underlying assumption of this
method is that the major source of correlation between
the global signal and the experimental paradigm is the
activation signal itself, and the effects of other pro-
cesses are either negligible or spatially incoherent.
When this assumption does not hold (i.e., A(t) and B(t)
are comparable), the orthogonalization method may
increase the number of false positives. The major ad-
vantage of this method is that it can be applied to
spatially extended activations that preclude the use of
masking techniques.
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One disadvantage of both the masking and the or-
thogonalisation methods is that they optimize the es-
timation of the global signal against a proposed model
and thus can not be used with a multivariate data-
driven approach (such as principal components analy-
sis). A completely new approach to global signal esti-
mation, independent of both local intensity changes
and the model imposed on the data, is presented by
Andersson et al. (2001) based on multivariate charac-
teristics of the PET data. This new method provides a
robust way to preprocess the PET data. However, fur-
ther work is needed to prove the method can be used in
the context of very complex spatio-temporal structure
characteristic of fMRI data.

In the examples presented in the literature to illus-
trate the negative impact of the correlation between
the global signal and the experimental paradigm, the
correlation is highly significant (t � 9.5, Aguirre et al.,
1998; Z � 7.88, Z � 5.31 Desjardins et al., 2001). In
practice we found that even for much lower correlation
levels, global normalization by proportional scaling can
sometimes produce conflicting results when compared
with grand mean scaling. To illustrate this, Fig. 1A
represents the histograms of the t values for propor-
tional scaling versus grand mean scaling applied to one
subject (subject A) performing a visual attention para-
digm. A complete description of the experimental task
and results can be found elsewhere (Chapman et al.,
2002); however, a short task description is provided in
the methods section.

The spatial location of activated/deactivated areas is
not relevant in this context. As can be seen in Fig. 1A,

proportional scaling adjustment produced a greater
number of significantly deactivated voxels while grand
mean scaling produced mainly significant activation.
Figure 1B represents another subject (subject B) per-
forming a modified visual attention task where the two
global normalization methods give similar results. The
correlation between the global signal and the paradigm
converted to a Z score was Z � 1.470 (df � 248) for
subject A and Z � 0.350 (df � 256) for subject B. Both

FIG. 2. Spatial distribution of the simulated activation for 1.5%
amplitude in smaller clusters data sets: O1, O2 clusters in occipital
lobe, P cluster in parietal lobe, M cluster in motor cortex, C cluster in
cingulate cortex, F cluster in frontal lobe.

FIG. 1. (A) The histogram of the t maps with two global normalization methods: grand mean scaling and proportional scaling for subject
A performing a visual attention paradigm. The t bins were defined as �0.5 to 0.5 around the values on the x-axis (e.g., 1 represents the bin
0.5 to 1.5). (B) Same comparison for subject B involved in a modified task. The vertical scale was restricted to values less than 50,000. This
restriction affects only the voxels with �0.5 � t � 0.5 where both methods indicate a similar number of voxels for both subjects.
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values are smaller than the values reported in the
literature. These examples illustrate the need for a
more informed and objective choice of the global nor-
malization adjustment. There is also a need to deter-
mine the “boundary conditions” that make the use of
each particular technique appropriate and that avoid
bias in the statistical inference. This outcome can be
achieved using known activation patterns incorporated
in a background of real fMRI noise.

In this study we used fMRI data, acquired in the
resting state, with added simulated focal activity, and
compared the sensitivity and false-positive rate across
different methods of global normalization. Previous
studies have not addressed whether global normaliza-
tion by proportional scaling introduces a confound or
indeed a nuisance variable for data sets where the
correlation between the global signal and the paradigm
is relatively low. Therefore, in this study we examined
a range of correlation values that, although not large,
are similar to the calculated values for our real data
sets.

METHODS

Brain images for seven healthy subjects were ac-
quired at rest (eyes closed) using an EPI sequence (GE
1.5 T, TR � 3500 ms, TE � 40 ms, FA � 60, 64 � 64 �
15 matrix, 4 � 4 � 7-mm spatial resolution, 160 imag-
es/subject, in five sessions of 112 s each). Prior to em-
bedding the simulated signal, the images were aligned
and spatially normalised to the EPI template using
SPM99 software, in order to place the activation signal

in equivalent brain locations rather than in the same
image position.

Six activation clusters were inserted in different
brain areas, shaped as Gaussian spheres (Fig. 2). For
the resting state data, the mean intensity varied from
765.8 � 5.9 to 1093.9 � 6.1 across subjects. Five data
sets were created by combining three levels of signal
amplitude (0.75, 1.5, and 2.5% of mean image inten-
sity) with two levels of spatial extent (smaller clusters
with standard deviation � from 4 to 7 mm and larger
clusters with � from 6 to 13 mm). The Gaussian distri-
butions were truncated at 3.8�. The centroids of O1,
O2, P, C, and M clusters were placed in slightly differ-
ent voxel locations (by one to two voxels) across data
sets. For cluster F the centroid was placed in exactly
the same voxel for all data sets.

The correlation values between the simulated para-
digm (h(t)) and the global signal (G(t)) are given in
Table 1. The correlation between the global signal in
the resting state data and the simulated paradigm was
different from zero (r0). The embedded activation in-
duced an increase in the correlation value from r0 to r
(via A(t)).

The simulated activations were modeled in time by
convolving the haemodynamic response function (hrf)
from SPM99 with a square wave (21-s period). For the
cluster in the frontal area F (Fig. 2), we introduced a
3-s spread in the response delay relative to onset across
the seven subjects.

Given the way we constructed the clusters, the sig-
nal intensity for the voxels at the edge of the clusters
was similar to the intensity of the underlying noise and

FIG. 3. (A) The histogram of the standard deviations around the mean represented as percentage from the mean for one subject in the
resting state. (B) The effect of cutoff value for the definition of the cluster of interest in sensitivity measures for cluster P in parietal cortex
in 1.5% amplitude small clusters data set. Three cutoff values were compared: 0.2, 0.15, and 0.1% of the mean signal intensity.
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thus we cannot expect to detect those voxels as acti-
vated. For this reason, in the sensitivity measurements
we defined a cluster of interest as all of the voxels inside
the simulated clusters with intensity values greater
than 0.2% of the mean image intensity. This cutoff
value was chosen based on the histogram of the stan-
dard deviation in the signal intensity for the resting
data represented as a percentage of the mean intensity
(Fig. 3A). Increasing this cutoff value will restrict the
sensitivity measure to the top of each cluster, where all
methods are expected to perform equally well. Decreas-
ing this value will only reduce the absolute values of
sensitivity without changing the relative variations
across methods as illustrated in Fig. 3B (for cluster P
in 1.5% amplitude, smaller clusters data set).

While the sensitivity was measured inside the clus-
ters of interest, the false-positive rate was measured
outside the simulated clusters in this way avoiding the
contamination of the results by the weakly activated
voxels at the edge of the clusters. Because the area
outside the simulated clusters varied for each data set,
we expect the false-positive rate to be different for the
same method across data sets. In data sets with larger
clusters, the tails of the spatial Gaussian distributions
overlapped. At the cluster of interest cutoff value of
0.2% of the mean image intensity, some of the clusters
of interest overlapped and in these cases we could not
measure an individual cluster sensitivity value. This
was the case for cluster P at the 2.5% amplitude in the
larger clusters data set. Since the amplitude of the
simulated signal varied within the cluster, the proba-
bility of detecting a voxel as activated diminished at
the cluster boundary, resulting in reduced absolute
sensitivity. However, we are interested only in relative
variations in sensitivity across the global normaliza-
tion methods described herein.

For each data set we performed five SPM99 fixed-
effects analyses, maintaining all parameters constant
except for the global normalization procedure. A high-
pass filter (49 s) was applied in all analyses. For one
data set (1.5% amplitude in larger clusters) we also

performed a random-effects analysis. The global nor-
malization methods compared were grand mean ses-
sion scaling global normalization (gms), global normal-
ization by proportional scaling (ps), ANCOVA (ANC),
masking method (mask), and orthogonalization
method (ort). ANCOVA analysis where the mean cen-
tered global signal was included in the design matrix
as a session specific user defined regressor (session
specific ANCOVA - ANC) was performed for all simu-
lated and real data sets. A subject-specific ANCOVA
(ANCs) was also performed for 2.5% amplitude, and
1.5% amplitude in the larger clusters data sets (the
mean centered global signal was introduced as a sub-
ject specific regressor in the design matrix). For the
masking method the activation was defined based on
the t map thresholded at Pcorrected � 0.05. For this
method we also studied how the probability threshold
value affects the sensitivity. To achieve this we defined
the activation to be excluded at four threshold levels:
Puncorrected � 0.1 (mask_1); Puncorrected � 0.01 (mask_2);
Puncorrected � 0.001 (mask_3); Pcorrected � 0.05 (mask_4).
The number of voxels excluded by each mask is differ-
ent for each data set and increased from mask_4 to
mask_1. As the number of excluded voxels increased,
the estimation of the global signal was less reliable.
For mask_3 and mask_4 the estimation of the global
signal was based on at least 90% of the intracranial
voxels in all data sets.

For all simulated data sets the t map was thresh-
olded at Pcorrected � 0.05 for fixed effects and Puncorrected �
0.001 for random effects to measure the sensitivity
(percentage of identified activated voxels from the total
number of activated voxels inside the clusters of inter-
est) and the false-positive rate (the proportion of voxels
identified as activated from the total number of voxels
outside the simulated clusters). The effect of the global
normalization techniques on induced deactivation was
measured by counting all the voxels in the deactivation
map (voxels with intensity values smaller than the
baseline intensities) thresholded at Puncorrected � 0.001.

TABLE 1

Correlation Induced by the Simulated Activation across Data Sets

Signal amplitude
(%)

Spatial extent
� (mm)

Activated voxels
(%)

Correlationa

(r/ro)
Correlationb

(Z)
Artifactual correlationa

(ra/ro)

0.75 4–7 0.8 1 �0.33593 0.4273 1.2
1.5 4–7 1.4 2 �0.31283 0.4748 �0.4

0.75 6–13 3.9 3.5 �0.26893 0.5736 �2.2
1.5 6–13 7 7.5 �0.11563 0.9248 �0.1
2.5 6–13 10.3 12 0.08763 1.3501 1.8

Note. r/r0, the ratio of induced correlation and the correlation in the resting state data; Z, the absolute size of the correlation induced; ra,
artifactual correlation calculated as the mean value of the correlation across 1000 random permutations of the experimental paradigm.

a Group level correlation.
b Min and max value across subjects.
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The data set for subject A (Fig.1A) was obtained from
a comparison between two conditions in a selective
visual attention experiment using a reach and grasp
task. The experimental condition required subject A to
reach out and grasp a target stimulus flanked by non-
targets prior to movement initiation. This condition
was compared to a “view only” condition where the
subject observed three stationary targets for the dura-
tion of the condition period. Data for subject B (Fig. 1B)
was also obtained from a selective visual attention
experiment but the conditions differed slightly. In the
condition of interest the subject was cued to the target
with a fiber-optic light and the nontarget objects re-
mained on the display during the reach-to-grasp re-
sponse. This condition was compared to a “view only”
condition and once again the baseline condition for
subject B differed slightly to that used for subject A:
the three nontargets moved synchronously in and out
of the display during the condition period. The two
subjects were preprocessed in the same way. A high-
pass filter with a time constant of 105 s was included
for both subjects. The motion parameters and/or their
derivatives were not included in the design matrix.

The session-specific ANCOVA, masking, and the or-
thogonalization methods were applied to subjects A
and B. For the masking method five iterations were
performed using the t map of the contrast thresholded
at Pcorrected � 0.05 and the F map of the effects of interest
thresholded at Puncorrected � 0.05, as suggested by
Andersson (1997). Since for real data the “ground
truth” is unknown, we compared the results in terms of
the number of voxels reported in the activation/deacti-
vation statistical maps thresholded at Pcorrected � 0.05.

RESULTS

An initial analysis was carried out on resting state
data prior to inclusion of simulated clusters at the
induced paradigm frequency (0.048 Hz) and no signif-
icant activation or deactivation emerged (Pcorrected �
0.05). At a lower threshold (Puncorrected � 0.001) 201 vox-
els were present in the deactivation map with grand
mean scaling, 200 with ANC, 440 with orthogonaliza-
tion, and zero with proportional scaling. The masking
method could not be applied to the null data since no
activation was detected.

Sensitivity. Global normalization by proportional
scaling decreased the sensitivity values for simulated
data sets with r/r0 		 1 (Figs. 4A and 4B). The orthogo-
nalization method resulted in slightly higher sensitiv-
ity (1–2% relative increase) than grand mean scaling,
which in turn outperformed the masking technique
(1–2% relative increase). The sensitivity values ob-
tained with ANCOVA were placed between propor-
tional scaling and grand mean scaling values. Subjects-
specific and session-specific ANCOVA gave very

similar results for the two data sets were ANCs was
tested.

With the masking method, we observed no improve-
ment in sensitivity after the first iteration. Also, the
sensitivity value was unaffected by the probability
threshold (Fig. 4C) after the significant activation was
masked out (mask_3 and mask_4). This result was
obtained for all data sets included in the analysis. The
correlation coefficient between the global signal and
the paradigm decreased toward the resting state value
(Fig. 4D). Similar variations in sensitivity were ob-
tained in the random effects analysis.

For subjects A and B (real data) the number of acti-
vated voxels (Pcorrected � 0.05, t 	 4.71) were 24,148
(gms), 5966 (ps), 10,324 (ANC), 45,152 (ort) for subject
A and 2021 (gms), 2581 (ps), 2484 (ANC), 2619 (ort) for
subject B. With the masking method the use of the t
map (Pcorrected � 0.05) or F map (Puncorrected � 0.05, results
reported in Fig. 5) rendered very similar results. The
mask based on the t map left 87.5% of the intracranial
voxels for subject A and 98.8% for subject B to estimate
the global signal while the mask based on the F map
left only 75.5% for subject A and 86.1% for subject B.
For both subjects the number of activated/deactivated
voxels stabilized after three iterations: 6505 activated
voxels for subject A and 2826 activated voxels for sub-
ject B. After five iterations, the correlation coefficient
between the global signal and the paradigm dropped to
Z � 1.370 for subject A and to Z � 0.320 for subject B.

False-positive rate. The false-positive rate varied
by less than 1% across methods for all data sets (Pcorrected

� 0.05, Fig. 4E). However, the trend in false-positive
rate variations across methods is opposite to the trend
observed for sensitivity: proportional scaling had the
smallest proportion of false positives (0.32% for 1.5%
amplitude in larger clusters data set) with ANCOVA,
masking, grand mean scaling, and orthogonalization
methods being higher (0.39% for ANC, 0.40% for ANCs,
0.42% for masking, 0.46% for grand mean scaling, and
0.55% for orthogonalization method when 1.5% activa-
tion amplitude in larger clusters data was used for
comparison).

Deactivation. Proportional scaling and ANCOVA
induced a dramatic increase in the number of deacti-
vated voxels: 10,951 voxels for proportional scaling
(Fig. 6B) and 8031 voxels for ANC (8521 for ANCs),
compared with 780 voxels for the masking method (Fig.
6C), 469 voxels for grand mean scaling (Fig. 6A), and
240 voxels for the orthogonalization technique (Fig.
6D) using the 2.5% amplitude, larger clusters data set.
The effect was consistent for all data sets with r/r0 		
1, for both fixed and random-effects analysis. For the
data sets with r/r0 
 1 a similar trend was observed,
but the differences across methods were much smaller
(462 voxels for proportional scaling, 601 voxels for
ANC, 587 voxels for the masking method, 389 voxels
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FIG. 4. (A) Sensitivity values across global normalization methods and data sets for cluster F (Pcorrected � 0.05); s, smaller clusters; l, larger
clusters. (B) Sensitivity values across global normalization methods and data sets for cluster P (Pcorrected � 0.05); s, smaller clusters; l, larger
clusters. These values are representative for all clusters except F. For the 2.5% amplitude, larger clusters data set an individual sensitivity
value for the P cluster could not be calculated since O1, O2, P, C, and M clusters were overlapped. (C) The effect of the probability threshold
on the sensitivity values with the masking method for 2.5% amplitude, larger cluster data set, cluster F (frontal). Puncorrected � 0.1 (mask_1);
Puncorrected � 0.01 (mask_2); Puncorrected � 0.001 (mask_3); Pcorrected � 0.05 (mask_4). (D) The reduction of correlation coefficient between the global
signal and the paradigm (r) toward the resting state value (r0) with the masking method. (E) False-positive rate values across data sets for
Pcorrected � 0.05; s, smaller clusters; l, larger clusters. (F) False-positive rate values across data sets for Puncorrected � 0.001; s, smaller clusters;
l, larger clusters.
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for grand mean scaling, and 291 voxels for the orthogo-
nalization technique, when the 0.75% amplitude,
smaller clusters data set was used for comparison). At
Puncorrected � 0.001, 167 voxels were expected to exceed

the threshold in the deactivation map. With a more
stringent threshold (Pcorrected � 0.05) no deactivation
was present with grand mean scaling, masking, and
orthogonalization, while 120 voxels were reported with
proportional scaling and 212 voxels with ANC (227
voxels with ANCs).

In the real data, for subject A no voxels were re-
ported in the deactivation map (Pcorr � 0.05) with grand
mean scaling and orthogonalization, only 9 voxels with
ANC while 2036 voxels were reported with propor-
tional scaling and 1522 voxels with the masking
method after three iterations. Subject B had 88 deac-
tivated voxels after grand mean scaling, 222 voxels
after proportional scaling, 169 voxels after ANC, 246
voxels after orthogonalization and 169 voxels after
masking (after five iterations).

DISCUSSION

We used resting-state fMRI data with added simu-
lated activation in order to assess the performance of
different global normalization methods using objective
measurements of sensitivity and false-positive rate. As
in other studies based on simulated data (Skudlarski et
al., 1999), we are unable to make any inference about
the absolute sensitivity values or absolute significance

FIG. 5. The effects of five successive applications of the masking
method for subject A (filled symbols) and for subject B (open sym-
bols). � represents the activated voxels and f represents the deac-
tivated voxels. The mask was defined by the F map of the effects of
interest (Puncorrected � 0.05); ps, proportional scaling.

FIG. 6. Sagittal view of the deactivation t maps (Puncorrected � 0.001). (A) grand mean scaling; (B) proportional scaling; (C) masking method
(mask_4); (D) orthogonalization method.
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of the statistical results, since they are expected to be
somewhat higher than real activations, whose proper-
ties are unknown.

This simulation directly models A(t) (see Eq. (3)). By
the way we measured the sensitivity both Aa(t) (via the
voxels included in the clusters of interest) and An(t)
(via the weakly activated voxels at the edge of the
clusters not included as activated) are represented.
The effect of An(t) may explain why the correlation
coefficient did not decrease to the resting state value
with the masking method for the 2.5% activation in the
larger clusters data set (Fig. 4D). By including real
fMRI noise as the background for the activation we
modeled, at least in part, Gv(t) � B(t) (the correlation
was different from zero in the resting state). Since in
practice it is not possible to estimate the separate
contributions to G(t), which are expected to be task-
dependent, it is hard to appreciate how well resting
state data reflects the noise variance in real activated
data. However, the presence of processes generating
B(t) in real data is substantiated by the residual cor-
relation for subjects A and B after five successive ap-
plications of the masking method. We assume that
Gv(t) � B(t) was underestimated in this simulation as
Skudlarski et al. (1999) suggested that the total vari-
ance in resting fMRI data is smaller than in data
acquired during a task performance.

The size of correlation between the global signal and
the experimental paradigm induced by the simulated
signal was small compared to the values reported in
the literature (Aguirre et al., 1998; Desjardins et al.,
2001). However, the correlation was consistent with
the range of values we have observed in our real data
(Fig. 1). We advocate reporting the correlation value in
future studies, to more completely describe the global
normalization problem in fMRI data sets.

Both ANCOVA and proportional scaling provided
lower sensitivity values and an increased number of
deactivated voxels as compared to the other three
methods. Although previous studies reported similar
results for proportional scaling and ANCOVA (Aguirre
et al., 1998 for fMRI; Andersson, 1997 for PET) we
found that the ANCOVA method produced slightly
higher sensitivity values than proportional scaling as-
sociated with slightly higher false-positive rate values.
The difference between the two methods is exacerbated
for data sets with r/r0 		 1. The results for subjects A
and B confirmed this trend. Session-specific and sub-
ject-specific ANCOVA performed comparably. Lower
false-positive rate values support the use of propor-
tional scaling as opposed to ANCOVA. It should be
noted that the global signal estimated via masking and
orthogonalization methods can also be used with
ANCOVA rather than with proportional scaling.

For the simulated data sets where the correlation
values were close to the resting state (r/r0 
 1), all
global normalization methods performed equivalently.

However, as the correlation between the global signal
and the experimental paradigm increases, the propor-
tional scaling normalization results deteriorate (Figs.
4A and 4B). Perhaps the most problematic effect is the
induced deactivation (Fig. 6B). For the proportional
scaling method, some of the deactivation clusters were
still significant at higher threshold (Pcorrected � 0.05).
This result demonstrates the tendency of proportional
scaling to produce false deactivations when the global
signal is confounded with the experimental paradigm.
The deactivation results for subject A reveal the com-
plexity of this problem for real data. Three of the meth-
ods indicated significant (Pcorrected � 0.05) deactivation
(proportional scaling, ANC, and masking) while the
other methods reported no deactivation (grand mean
scaling and orthogonalization). This suggests that, in
this range of correlations, any deactivations identified
only by some global normalization methods should be
interpreted with caution. One cannot automatically
infer that such deactivation is not real. However, in
such circumstances, the deactivation should be well
justified by the integrated psychological and physiolog-
ical theories about that particular task.

When the activation is confined to spatially re-
stricted areas, as implemented in this simulation
study, the masking method produced a reasonable
trade-off between optimal sensitivity and false-positive
rate values. Moreover, the number of deactivated vox-
els is much smaller than for proportional scaling and
similar to the other normalization methods included in
this study. The masking method aims to correct for
Aa(t) but in fact also corrects for GVa(t) � Ba(t) and does
not take into account An(t). This method will be a good
approximation as long as the number of activated vox-
els is much smaller than the number of nonactivated
voxels.

For all simulated data sets we observed no improve-
ment in sensitivity after the first masking iteration.
This result is likely to be due to the fact that the
simulated activation was placed in the same position in
all subjects and all significant activation is captured in
the first iterative step. The situation may be different
for a real activation as suggested by the results for
subjects A and B. For the simple two-state activation
we simulated, the F map of the effects of interest is
equivalent to the t map (h(t) has just one column).
However, this is not in general the case with a complex,
multitask design where the columns of h(t) can be
correlated in different degrees with the global signal.
In this case the correlation coefficient should be esti-
mated for each column and the correlations should be
individually corrected for. Andersson (1997) proposed
the use of the F map with F 	 1.96 (Puncorrected � 0.05)
since for this threshold at least 95% of the nonactivated
voxels were still used to estimate the adjusted global
signal. For most fMRI data, this F threshold is proba-
bly too low. From our experience with real fMRI acti-
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vations the number of voxels with F 	 1.96 in the
effects of interest map is too big for this map to define
the mask. Since the F map captures all the variance in
the data explained by a particular model (design ma-
trix), it is expected that the number of voxels exceeding
a certain threshold in this map will increase with the
complexity of the model, provided that the model ac-
counts for extra variance. The masking method is ap-
propriate as long as the number of voxels used to
estimate the global signal is large enough to determine
global effects. Our results show that once the real
activation is masked out (mask_3 and mask_4), the
sensitivity values cannot be further improved by de-
creasing the threshold value (Fig. 4C). Therefore for a
multitask design when the contrasts of interest can be
correlated in different degrees with the global signal,
two solutions can be adopted to implement the mask-
ing method: estimation of the global signal based on
the t map for each contrast or the use of the F map of
the effects of interest (maybe thresholded at a higher
level). These solutions were tested for subjects A and B,
both of whom performed a multitask paradigm, and
produced similar results. The masking method had a
smaller impact on the number of activated/deactivated
voxels (Fig. 5) than for the PET data analyzed by
Andersson (1997). This may be due to the intrinsic
differences between PET and fMRI data and/or to the
small correlation for the two subjects we reported here.

The very simple grand mean scaling normalization
produced better results than we expected. This may be
because the intrasession variance in the global signal
for all subjects was much smaller than the intersession
variance (2 to 30 times smaller across subjects), and
also because of the short sessions (112 s). We anticipate
that short time fluctuations with large amplitudes in
the magnetic field strength or physiological parame-
ters could negatively affect the grand mean scaling
results in other contexts. We note that with the imple-
mentation of GLM in SPM99 where session effects are
automatically included as covariates of no interest
(c(t)) in the design matrix, grand mean scaling is prac-
tically equivalent to no global normalization when no
filtering is employed. However, a high/low-pass filter
included in the design matrix will account for low/high-
frequency components of the global signal intrasession
variance.

The differences in sensitivity between masking and
grand mean scaling, although small for the simulated
data, can be exacerbated in real data as the results for
subject A demonstrate. The simulated data also indi-
cated a slightly bigger false-positive rate for grand
mean scaling compared with masking. Taking into ac-
count these observations, in practical situations, grand
mean scaling can be used in studies where there are
hypotheses about the activated areas, providing that
the scan-to-scan variance in the global signal is not
bigger than session-to-session variance. However, for

studies where new tasks and/or brain mechanisms are
explored, the masking method represents a safer alter-
native.

Although the orthogonalization method produced
the highest signal recovery (sensitivity), there are po-
tential problems with the assumptions of this method.
The mechanisms generating fluctuations in the signal
intensity for a large number of voxels (global effects)
are not well understood. It is acknowledged that the
observed correlation between the experimental para-
digm and the estimate of the global effects (global
signal) is not solely generated by the task induced
activity (Aguirre et al., 1998; Desjardins et al., 2001).
The contributions of the underlying physiological pro-
cesses to the correlation values (B(t)) may be equiva-
lent or even greater than those induced by the activa-
tion signal (A(t)). In such circumstances, the use of the
orthogonalization method along with an increase in the
probability of detecting weakly activated voxels (in-
crease in sensitivity) can also artificially increase the
chance of nonactivated voxels exceeding the level of
statistical significance (increase in false-positive rate,
i.e., decrease in specificity). In our simulation these
kinds of processes may have been underestimated.
However, the increase we observed in the false-positive
rate (Figs. 4E and 4F) suggests that the orthogonaliza-
tion method may overcorrect the correlation between
the global signal and the paradigm even under our
simulation conditions. In the above context, overcor-
recting refers to the observation that while the mask-
ing method tends to reduce the correlation value to the
baseline value (which is bigger than zero), the orthog-
onalization method reduces the correlation value to
zero. In this case, the only potential source of correla-
tion other than the activation signal itself resides in
the spatio-temporal structure of the fMRI noise that
can be, by chance, correlated with any experimentally
imposed paradigm. In order to measure this effect, we
created 1000 random permutations of the paradigm
and measured for each occurrence the correlation with
the global signal across all data sets. The ratio of the
mean correlation values across all permutations to the
correlation of the resting state data is reported in Table
1. By bounding to zero the correlation coefficient be-
tween the global signal and all the nonconstant col-
umns of the design matrix, the orthogonalization
method corrects for this artifactual correlation as well,
while the masking method does not (Fig. 4D). This may
explain the increase in sensitivity associated with the
increase in false-positive rate observed with this
method (Figs. 4A, 4B, 4E, 4F). It may be argued that
appropriate spatial filtering and/or the use of extent
thresholds can reduce the false-positive rate. However,
the differences in false-positive rate values across
methods may be exacerbated in real fMRI data sets.
This observation is supported by the increase in rela-
tive variations of false-positive rate at a lower proba-
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bility threshold (Puncorrected � 0.001, Fig. 4F) and also by
the huge increase in the number of activated voxels
with the orthogonalization method for subject A.

The masking method performs better from this per-
spective. When the estimate of the global signal is still
based on a large number of voxels (at least 90% in
these simulated data), all the underlying physiological
processes are included for these voxels. However, when
the task-induced activity is largely spread across the
brain as in the studies described in Desjardins et al.
(2001), the masking method cannot be used. In such a
case the contribution of the activation signal to the
correlation value is far bigger than any other contribu-
tions (A(t) 		 B(t)) and the orthogonalization method is
a more appropriate choice.

Based on the results of this simulation study we offer
a practical guide for global normalization of fMRI data
(Fig. 7).

The results for the application of these five global
normalization methods to subjects A and B (real data)

support the main finding with the simulated data. Sub-
ject A falls in r/r0 		 1 category while subject B behaves
more like r/r0 
 0 data sets.
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