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There are many ways to detect activation patterns
in a time series of observations at a single voxel in a
functional magnetic resonance imaging study. The
critical problem is to estimate the statistical signifi-
cance, which depends on the estimation of both the
magnitude of the response to the stimulus and the
serial dependence of the time series and especially on
the assumptions made in that estimation. We show
that for experimental designs with periodic stimuli,
only a few aspects of the serial dependence are impor-
tant and these can be estimated reliably via nonpara-
metric estimation of the spectral density of the time
series, whereas existing techniques are biased by their
assumptions. The linear model with (stationary) seri-
ally dependent errors can be analyzed entirely in fre-
quency domain, and doing so provides many insights.
In particular, we introduce a technique to detect pe-
riodic activations and show that it has a distribution
theory that enables us to assign significance levels
down to 1 in 100,000, levels which are needed when a
whole brain image is under consideration. Nonpara-
metric spectral density estimation is shown to be self-
calibrating and accurate when compared to several
other time-domain approaches. The technique is espe-
cially resistant to high frequency artefacts that we
have found in some datasets and we demonstrate that
time-domain approaches may be sufficiently suscepti-
ble to these effects to give misleading results. The
method is easily generalized to handle event-related
designs. We found it necessary to consider the trends
in the time series carefully and use nonlinear filters to
remove the trends and robust techniques to remove
“spikes.” Using this in connection with our techniques
allows us to detect activations in clumps of a few (even
one) voxel in periodic designs, yet produce essentially
no false positive detections at any voxels in null
datasets. © 2000 Academic Press

INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a
noninvasive technique used to measure the temporal
hemodynamic response of the brain to a given stimu-
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lus. Datasets consist of 3-D grids of N volume elements,
called voxels, repeatedly scanned at n intervals
through time. So at each voxel there will be n measure-
ments, {yt: t 5 0, . . . , n 2 1}, which constitute the voxel
ime series of that point in space. The volume at each
ime point is acquired as a series of (normally) contig-
ous 2-D slices of voxels in the axial, sagittal, or coro-
al orientation. Each slice can be viewed as a 2-D

mage of pixels (see Figs. 12 and 17).
The stimulus, {xt: t 5 0, . . . , n 2 1}, will be designed

to activate the cognitive component under study and
we will be interested in modelling the relationship
between yt and xt and obtaining inference from that
model concerning the significance of the response to
the stimulus at each voxel.

A common stimulus design in fMRI experiments is
one which is periodic in nature. The simplest example
involves c repeats of a block which consists of b vol-
umes scanned during a baseline stimulation, followed
by b volumes scanned during a stimulus known to
contain the cognitive component under study. The de-
sign can be characterised by its fundamental fre-
quency, vc, measured in the number of cycles per sec-
ond. Figure 1 shows a real time series for a voxel in an
area of activation in response to the periodic “boxcar”
stimulus shown at the bottom of the figure.

Hemodynamic response to the underlying neuronal
activity and noise attributable to a variety of sources
will cause the fMRI signal in areas of activation to be a
blurred, delayed, and noisy version of the stimulus, as
seen in Fig. 1. The time series also exhibit significant
serial dependence in time, as noted by Friston et al.
(1994a). The accuracy of any method proposed to detect
activation will depend on the way in which these fac-
tors are accounted for in a model.

Various methods have been proposed in the litera-
ture (Bullmore et al., 1996; Friston et al., 1994a, 1995c;

orsley and Friston, 1995; Lange and Zeger, 1997;
ocascio et al., 1997; Purdon and Weisskoff, 1998;
arahn et al., 1997), which model the underlying cor-
elation structure of the time series in either the time-
omain or the spectral-domain. Most time-domain ap-
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proaches attempt to prewhiten the time series using
estimates of the correlation structure, thus enabling an
analysis to proceed under the assumption of indepen-
dence. Prewhitening can be achieved by switching to
the spectral-domain and using an appropriate spectral
density estimate. The duality that exists between these
two domains implies that a given method may be com-
puted in either domain, although this may prove easier
in one domain than in the other.

Assuming a periodic stimulus design, fMRI time se-
ries analysis in the spectral-domain is greatly simpli-
fied and is the more natural approach. The nature of
periodic designs ensures that the components of vari-
ance attributable to the response to the stimulus will
occur at a few discrete frequencies in the spectral-
domain, these being the fundamental frequency of ac-
tivation and its harmonics. More importantly, the fun-
damental frequency of activation contains the majority
of information regarding the response to the stimulus
and we can concentrate solely on estimating the accu-
racy of the variance component at this frequency. The
problem therefore reduces from estimating the entire
correlation structure to just a few (even one) compo-
nents. The way in which these component(s) are esti-
mated is then the crucial factor in determining the
validity and power of the derived test.

In this paper, we make as few assumptions as pos-
sible by avoiding the use of parametric models at all
stages of the analysis. Nonparametric techniques are
applied to trend removal, estimation of the underlying
correlation structure and validation of theoretical dis-
tributions. An approach for the analysis of periodic
designs is described within the frame work of spectral
time series theory and applied to activation and null
experiments. Nonparametric spectral density estima-
tion is shown to be self-calibrating and accurate when

FIG. 1. A real response (solid line) from the IOP dataset in an
area of activation from the visual experiment. The periodic boxcar
shape of the visual stimulus is shown below (dotted line).
compared to several other time-domain approaches.
The technique is especially resistant to high frequency
artefacts that we have found in some datasets and we
demonstrate that time-domain approaches may be suf-
ficiently susceptible to these effects to give misleading
results. The relationship to existing methods is dis-
cussed and extensions to event-related designs are de-
scribed at the end of the discussion.

MATERIALS AND METHODS

Datasets

The analysis of two datasets is reported in this
paper.

Audio-visual stimulation dataset. A dataset was
obtained courtesy of Dr. Brammer at the Institute of
Psychiatry (IOP) (Kings College, London). One hun-
dred T*2-weighted MR images (TE 40 ms; TR 3 s) were
acquired at a field strength of 1.5 Tesla. Acquisition
consisted of 100 vol of 14 contiguous axial slices. Each
slice consisted of a 64 3 64 grid of voxels with dimen-
sions 3.1 3 3.1 3 7.7 mm.

The experimental consisted of simultaneous but un-
related visual and auditory stimulation. The visual
stimulation occurred in a complete periodic design con-
sisting of 5 blocks of 20 scans. Each block consisting of
10 baseline scans followed by 10 scans acquired during
visual stimulation (a flashing checkerboard). The au-
ditory stimulation design was an incomplete periodic
design. Blocks consisted of 26 scans, 13 baseline scans,
followed by 13 activation scans (listening to a talking
book). The last block thus contained only 9 activation
scans.

Null dataset. A null dataset was obtained from our
collaborators at the Oxford Centre for Functional Mag-
netic Resonance Imaging of the Brain. Two hundred
T*2-weighted MR images (TE 30 ms; TR 3 s) were ac-
quired at a field strength of 3.0 Tesla. Acquisition
consisted of 200 vol of 21 contiguous axial slices. Each
slice consisted of a 64 3 64 grid of voxels with dimen-
sions 4 3 4 3 6 mm. There was no stimulus; all scans
were acquired under baseline conditions.

Motion correction was applied to the datasets using
AIR (Woods et al., 1992) within the MEDx analysis
package. Although it has been suggested (Friston et al.,
1996) that rigid body realignment alone may not be
sufficient to remove all motion artefacts, this is not the
focus of this paper and has no bearing on the method of
analysis we propose.

Trend Removal

Many voxel time series exhibit low frequency trend
components. These may be due to aliased high fre-
quency physiological components or drifts in scanner
sensitivity. Whatever the cause, these trends tend to

vary nonlinearly in time and may result in false-posi-
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368 MARCHINI AND RIPLEY
tive activations if they are not accounted for in the
model.

Nonlinear trends can be removed in a variety of ways
(see, for example, Venables and Ripley, 1999). The
method must be able to remove obvious nonlinear
trends and leave voxel time series with no obvious
trend almost unchanged. Methods should also be eval-
uated by their ability to estimate trends at voxels for
which there is a significant response to the stimulus.
Some methods incorrectly infer trends at the ends of
such series and this should be avoided. We have found
a simple running-lines smoother to be a reliable
method of trend removal.

A running-lines smoother fits a linear regression (by
least-squares, or robustly) to the k nearest neighbors of

given point and then uses the line to predict the
esponse at that point. For the analysis of periodic
esigned fMRI experiments we suggest setting k equal
o twice the cycle length. Figures 2–4 show three voxel
ime series each with trends fitted by applying a run-
ing lines smoother using k 5 40. Obvious trends have
een removed and only minimal end effects occur for
oxels exhibiting activation.
Nonlinear trend removal of this type is ineffective for

oxel time series which exhibit large isolated spikes at
ome time points. These effects may be minimized by
educing all observations beyond a certain distance
rom the mean value to within some specified limit.
his technique is called Winsorizing (Wilcox, 1998) and
ill protect against false positive responses to the stim-
lus caused by these large peaks. We have found such
ffects to occur mainly outside the brain.

ime Series Analysis

Time series is the study of correlated measurements
hat occur in time (Bloomfield, 1976, 1991; Diggle,

FIG. 2. A voxel time series from the IOP dataset in an area of
ctivation by the visual stimulus.
990; Priestley, 1981). Typically, we observe one or
ore realisations {yt: t 5 0, . . . , n 2 1} of a stochastic
process {Yt} and wish to describe this process and make
inferences about it. The challenge in many applications
is accurate description of the structure of the correla-
tions between time points and comparison with the
properties of known processes. The validity of any in-
ference may depend critically on the accuracy of the
model of these correlations.

In the time-domain, the correlation structure of a
second-order stationary process is described by the au-
tocovariance function (acf) gk defined as

gk 5 Cov~Yt, Yt2k! (1)

5 E~~Yt 2 m!~Yt2k 2 m!! (2)

This function measures the relationship of observa-
tions separated by a lag k in time.

FIG. 3. A voxel time series from the IOP dataset showing an
obvious nonlinear trend.

FIG. 4. A voxel time series from the IOP dataset in an area of no

activation by either stimulus.
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369DETECTING SIGNIFICANT ACTIVATION IN fMRI
In the spectral-domain the correlation structure is
represented by the spectral density, f (v), v [ [0, 1/2d],
defined by

f~v! 5 O
k52`

`

gkexp~2i2pdkv!, (3)

where d is the sampling interval of the time series in
seconds and v is measured in cycles per second. The
spectral density describes the long-run properties of
the process in terms of the tendency for periodic com-
ponents of different frequencies to occur in any given
realization.

For the analysis of fMRI voxel time series we assume
a linear model for the response in the time-domain

Yt 5 Xtb 1 Zt t 5 0, . . . , n 2 1 (4)

here Yt represents the response in the voxel at time t,
Xt is row t of an (n 3 p) design matrix X, whose columns
pan the space of the hemodynamically modulated
timulus and confounding effects like trends, b is a

(p 3 1) parameter vector and Zt is a second-order
tationary stochastic process with zero mean and un-
nown correlation structure. For a realisation of length

this correlation structure will be described com-
letely by an n 3 n covariance matrix s2V 5 KKT,

where

Vij 5
g ui2ju

s 2
(5)

and K is a (nonunique) matrix square root. If V is
known, the correlations can be removed completely by
applying the pre-whitening matrix K21 to both sides of
the matrix form of model (4), which gives

K 21Y 5 ~K 21X!b 1 h, (6)

where Var(h) 5 s2I. Ordinary least squares will then
provide optimal parameter estimates and standard
distribution theory can then be applied to assess the
significance of the response to the stimulus. This
method is exactly equivalent to generalized least
squares with covariance matrix V. Since V is unknown,
it must be estimated simultaneously with b, normally
using an iterative procedure.

The equivalent model in the spectral-domain is ob-
tained using the discrete Fourier transform at the Fou-
rier frequencies
vj 5 j/dn j [ S 5 $0, . . . , n/2%. (7)
For a series {ht: t 5 0, . . . , n 2 1} this is defined as

dh~vj! 5 n 21 O
t50

n21

htexp~2i2pvjdt!. (8)

he model then becomes

dY~vj! 5 dX~vj!
Tb 1 dZ~vj!, (9)

for j 5 0, . . . , n/2. It can be shown that dZ(vj) and
Z(vk) are approximately uncorrelated for large n and
hat (apart from j 5 0, n/2)

E~udZ~vj!u 2! <
fZ~vj!

n
, (10)

where fZ(vj) represents the spectral density of the error
process at the Fourier frequencies. If fZ(v) is known,
weighted least squares will provide optimal estimates
of b and if fZ(v) is unknown it must be estimated
simultaneously with b, as in the time-domain.

The duality between the time and spectral-domains
due to their explicit mathematical relationship implies
that every proposed method of analysis may be com-
puted in either domain, although this may prove con-
siderably easier in one domain than in the other. The
choice of domain will then depend only upon which
provides the most natural interpretation of the prob-
lem under study. To detect activation fMRI voxel time
series we prefer to work in the spectral-domain since
the approach is greatly simplified in the case of peri-
odic designs.

Spectral Time Series Analysis of Periodic Stimulus
Designs

By assuming the design consists of c repeats of a
symmetric baseline-activation block and that the
brain’s functional response can be approximated by a
linear system, all the information concerning the re-
sponse to the stimulus will lie at the fundamental
frequency and harmonics of the stimulus design. These
will be the exact Fourier frequencies, vj for j [ SF 5 {c,
c, 3c, . . . , n/2}. If we further assume that any con-

founding effects such as trends have been removed
from the time series beforehand, then the component
dX(vj) in model (9) will be zero at all Fourier frequen-
cies other than the fundamental and harmonics. Then
model (9) becomes

dY~vj! 5 HdX~vj!
Tb 1 dZ~vj! j [ SF

dZ~vj! j [/ SF, (11)

which implies that by taking the discrete Fourier

transform of the time series at each voxel, the majority
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of the frequencies will contain information solely about
the correlation structure of the underlying stochastic
process at the voxel. This can be illustrated by plotting
the periodogram, I(vj), of the time series for a voxel in
an area of activation, for all Fourier frequencies.

The periodogram is defined by

I~vj! 5 nudY~vj!u 2

5 n~R~dY~vj!!
2 1 I~dY~vj!!

2! (12)

and represents the variance of the time series attribut-
able to an oscillation of frequency vj. Figure 5 shows the
periodogram of the detrended voxel time series shown in
Fig. 2. The extremely large ordinate at the fundamental
frequency is indicative of the response to the stimulus.
The first two harmonics are noticeably larger than we
might expect but after that higher harmonics are indis-
tinguishable from the underlying process. The funda-
mental frequency and first two harmonics accounted for
47.9, 3.3, and 3.1% of the total variation respectively and
higher harmonics were found to contain little or no infor-
mation regarding the response to the stimulus, agreeing
with Bullmore et al. (1996). Even though there is a little
information in the second and third harmonics, it is harder
to extract from the noise and in this paper we concentrate
on detecting activation via the fundamental frequency.

The phase of the response to the stimulus in any
given voxel will be unknown and can be accommodated
into model (11) by assuming the design matrix X con-
sists of two columns containing orthogonal sinusoids at
the fundamental frequency vc. The optimal estimator

FIG. 5. The periodogram of a detrended voxel time series in an area
f activation. The fundamental frequency and first two harmonics are
lotted as squares. The large ordinate at the fundamental frequency is
ndicative of the response and to a lesser extent the first two harmonics
lso exhibit evidence of a response. Spectral density estimates before
thick line) and after (dashed line) spatial smoothing. The spectral
ensity estimates do not apply to the extreme frequencies 0 and 1/2d,
hich are not included in the estimation procedure.
of b is found by minimizing the quantity
O
j50

n/2 idY~vj! 2 dX~vj!
Tbi 2

fZ~vj!/n

to obtain

b̂ 5 2SR~dY~vc!! 0
0 2I~dY~vc!!

D , (13)

which does not depend on the underlying spectral den-
sity fZ(v). Comparing (12) and (13) we see that there is
an explicit relationship between I(vc) and the optimal
estimate of b. It then becomes clear that I(vc) is the
optimal estimate of the power at the fundamental fre-
quency regardless of the form of the spectral density
fZ(v). Thus, a test for the significance of the response to
a periodic stimulus should be based on I(vc).

The asymptotic sampling properties of the perio-
dogram are well-known. For increasingly long series:

(I). I(vj)/f(vj) ; E where E has a standard exponen-
tial distribution.

(II). I(vj) and I(vk) are independent for all k Þ j.

This is a very general result (Priestley, 1981) that
requires only mild conditions on the form of the sta-
tionary stochastic process and includes AR, MA, and
ARMA processes as special cases. The asymptotic dis-
tribution is known to be accurate for series of moderate
length, such as those encountered in fMRI experi-
ments. The result implies that I(vj) is an unbiased
estimator of f(vj), but it is not a consistent estimator
since its variance is constant and does not depend on n.
If we assume that the underlying spectral density f(v)
is smooth then we can use a smoothed version of I(v),
which we denote g(v), to estimate f(v). This theory does
not apply to the extreme frequencies 0 and 1/2d, which
are not included in the estimation procedure.

The spectral density estimate provides us with a
baseline against which to test for significant depar-
tures from the underlying process. From (I),

I~vj!

f~vj!
; E (14)

Substituting g(vj) for f(vj), we define the ratio statistic,
Rj, as

Rj 5
I~vj!

g~vj!
, vj 5 j/dn (15)

Large values of Rj indicate that the component of the
voxel time series characterized by oscillations at the
Fourier frequency vj, is larger than we would expect

given our estimate of the spectrum. For a periodic
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design only the Rj at the fundamental frequency of
activation and its harmonics are of interest, and hence
only the estimate of the spectral density (of the noise)
at those frequencies.

For incomplete periodic designs the fundamental fre-
quency of activation and its harmonics will not lie
exactly at Fourier frequencies and the variance attrib-
utable to the response will occur in a spread of frequen-
cies around the fundamental and harmonics. We can
avoid this by padding the series (adding zeroes) to
make up the length of a complete periodic design, so
that for the auditory stimulus in the IOP dataset we
add four observations to make 104 scans. The effects of
the addition can be ameliorated by tapering (Bloom-
field, 1976) the series before padding, that is smoothly
reducing the magnitude of the series to zero at each
end. As trend removal is more difficult at the ends,
tapering may be a good idea even for complete periodic
designs.

Estimation of the Spectral Density

We have seen that we are only interested in the
spectral density at a few (often just one) Fourier fre-
quencies, and we are interested in the spectral density
of the error series Zt not the observed series Yt. Para-

etric models (such as low-order autoregressive pro-
esses) fit a restrictive overall shape to the spectral
ensity and so may be (and in our experiments were)
iased estimates of the spectral density at the frequen-
ies of interest. Even if they are not appreciably biased,
hey will be using the information at much higher
requencies to determine the spectral density at the
undamental frequency of the design. A flexible non-
arametric approach was tried and seems highly suc-
essful.

An estimate of the spectral density is obtained by
moothing the periodogram on log scale (Wahba, 1980),
og(I(v)), to ensure that the spectral density estimate is

positive everywhere when we transform back from log-
scale, and to stabilize the variance of the terms being
smoothed. In this case,

log I~vj! , log f~vj! 1 log E, (16)

where log E has a standard Gumbel distribution from
(I). The mean of this Gumbel distribution is equal to
the Euler–Mascheroni constant

E~log E! 5 g 5 20.57721 . . . (17)

So by smoothing Zj 5 log I(vj) 2 g we obtain an
asymptotically unbiased estimate of log f(vj). This is
then inverted to obtain an estimate of the spectral
density, denoted g(vj). A smoothing spline (Silverman,

1985) was chosen to smooth the log-periodogram.
To ensure the spectral density of the noise is esti-
mated independently of any response to the stimulus,
the periodogram ordinates at the fundamental fre-
quency of stimulation and its first two harmonics are
not included in this procedure.

The application of detrending will cause the first few
periodogram ordinates to be small compared to higher
ordinates and it has been observed by Zarahn et al.
(1997) and by us that lower frequency ordinates tend to
be more variable than those at higher ordinates. Thus,
we will want to allow the spline more freedom at lower
frequencies. This is done by transforming the x-axis of
the periodogram before fitting the spline to give more
space between lower frequency ordinates.

So far we have estimated the spectral density inde-
pendently at each voxel, but we applied a small amount
of spatial smoothing to the estimates. Figure 6 shows a
3 3 3 grid of normalized spectral density estimates
plotted on the same scale, in an area of no activation.
The spectra show differences mainly at lower frequen-
cies where we would expect the spectral density esti-
mate to be more variable. Local smoothing of the spec-
tra in space will thus ensure a more stable estimate of
the spectral density at each voxel. We used a dis-
cretized isotropic Gaussian filter to smooth normalized
spectral density estimates. More advanced spatial fil-
tering may be applied that takes into account differ-
ences in the correlation structures of different tissue
types and may better protect against bias introduced
by smoothing spectra whose form does not vary
smoothly in space. In Fig. 5 the lines show the spectral
density estimate before and after spatial smoothing is

FIG. 6. Normalized spectral density plots on the same scale for a
3 3 3 grid of voxels in an area of no activation for the visual
xperiment.
applied to the spectra.



t

E

m

d
t

e
(

372 MARCHINI AND RIPLEY
Testing for a Response to the Stimulus

By calculating the statistic Rj at the fundamental
frequency of activation, vc, we obtain a test statistic,
Rc, for significant activation.

Rc 5
I~vc!

g~vc!
, vc 5 c/dn (18)

Large values of Rc indicate a large effect at the funda-
mental frequency.

The sampling properties of the periodogram (see Eq.
(14)) imply that under the hypothesis of no activation
the statistic Rc has a standard exponential distribu-
ion, asymptotically, and so log Rc has a standard

Gumbel distribution. The accuracy of this asymptotic
distribution may be determined by comparison to non-
parametric estimates of the distribution of Rc. Equa-
tions (14) and (15) indicate that it is not just the sta-
tistic Rc (at the fundamental frequency of stimulation)
that is asymptotically exponentially distributed, but
rather all of the statistics Rj apart from j 5 0 and n/2.

ach Rj tests for a unexpectedly large effect with fre-
quency vj, where we are only interested in a few of
those frequencies. Even if the exponential distribution
is not a good model, all of the statistics Rj will have the
same asymptotic distribution under the null hypothe-
sis of no activation, except the first few lowest frequen-
cies which will be affected by the trend removal. As
there will be little or no response to the stimulus at all
frequencies except the fundamental and first few har-
monics we can use the values of Rj at these other
frequencies to obtain a large sample from the null
distribution. This provides a benchmark against which
to compare the theoretical distribution of Rc, at negli-

FIG. 7. Histogram of log Rj values from the analysis of the null
ataset at all frequencies except the first few lowest, together with
he Gumbel density (thick line).
gible computational cost at this stage of the analysis t
since these Rj values occur as a byproduct of the esti-
ation of Rc. Thus the technique can be self-calibrated.
Figure 7 shows the histogram of log Rj values from

the analysis of the null dataset at all frequencies ex-
cept the lowest few. The Gumbel density is overlaid on
the plot and indicates that this theoretical distribution
fits the null distribution very well. Figures 8 and 9
show histograms of log Rj values from the analysis of
the visual experiment in the IOP dataset. In Fig. 8 all
frequencies are included, except the fundamental, its
first two harmonics and the lowest few frequencies. In
Fig. 9 only the values at the fundamental frequency are
used. The difference in the right tail of the histogram
compared to the Gumbel density are due to those vox-
els which exhibit activation.

Figure 10 compares the nonparametric distribution
to the theoretical. The probability density of the ratio
statistic was estimated using the local density estima-
tion procedure described in Loader (1996) using the
IOP data. The estimate was based on the Rj values at
all frequencies except the fundamental, first two har-
monics and the first few lowest frequencies. The esti-
mated cdf F(x) is transformed using the inverse of the
theoretical cumulative density function (cdf) and plot-
ted against x, which would give a straight line if the
theoretical distribution was true. This plot is similar to
a Q–Q plot in which ordered samples are plotted
against each other, with a straight line indicating
agreement in their distribution. Rather than plot dis-
crete samples against each other we plot continuous
densities, these being the estimate of the null distribu-
tion using the Rj values and the theoretical exponential
distribution. The right hand scale indicates P values in
powers of 10 for the theoretical distribution. This
shows that the nonparametric density has a slightly
shorter tail than the theoretical distribution but the

FIG. 8. Histogram of log Rj values from the analysis of the visual
xperiment in the IOP dataset, together with the Gumbel density
thick line). All frequencies were used, except the fundamental, first

wo harmonics, and the first few lowest frequencies.
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agreement is very good at all values far into the tail of
the distribution. Density estimates calculated using
the null dataset showed similarly excellent agreement
with the theoretical distribution, as indicated by Fig. 7.

Our tests provide very strong support for the validity
of the theoretical distribution.

Detecting Activated Clusters

Because there are so many voxels (20,000 or more) in
a whole brain image, fairly rare events for any voxel
are quite likely to occur somewhere. If the procedure
for a single voxel has probability a of a false positive,
the expected number of false positives is Na when N
voxels are considered, and the probability of any false
positives is bounded above by this quantity (by what is
known as Bonferroni’s bound). Thus if we want to look
for activations on one or a small cluster of voxels we
need to consider events with false positive rates of 1025

to 1024. Figure 10 shows our distribution theory is very
accurate in that region.

The level at which to threshold the statistic or P
value image to assess the validity of the global null
hypothesis of no activation anywhere in the image will
be determined by the form of the spatial correlations
between voxels. For example, if the voxels were inde-
pendent then a Bonferroni correction could be applied.
Such a test will be sensitive to areas of activation that
consist of small high peaks of activation but not for
large low peaks of activation which will go undetected
by a global threshold method of this type. This has
been noted in the literature (Friston et al., 1991, 1994b;
Worsley et al., 1996; Poline et al., 1997) in which the
theory of random fields has been applied to the analy-
sis of statistic maps that correct for the presence of

FIG. 9. Histogram of log Rj values from the analysis of the visual
xperiment in the IOP dataset, together with the Gumbel density
thick line). Only the values at the fundamental frequency were
sed. The differences between the right tails of the histogram and
he Gumbel density are due to those voxels with activation.
spatial correlations and account for the topology of
clusters of activated voxels. Two crucial assumptions of
these theoretical approaches are that the statistic map
is a realization of some homogeneous random field and
that the voxel dimensions are sufficiently small to pro-
vide an accurate representation of the underlying con-
tinuous process of the brain’s response. These assump-
tions can be guaranteed if the original data is
smoothed in space but this will also considerably blur
the signal. In effect the analysis has been fitted to
comply with the theory when it is surely better to apply
a theory to the analysis which makes more realistic
assumptions. This has been achieved in part by the use
of randomization approaches such as those employed
by Bullmore et al. (1996, 1999) and Locascio et al.
(1997). These approaches allow a wider range of cluster
characteristics to be measured and assessed for signif-
icance although the question of how to characterize
each cluster is one on which there seems to be no clear
consensus and is the focus of our current work in this
area.

RESULTS AND DISCUSSION

In this section we show the results of our method
when applied to the visual experiment of the IOP data-
set and compare it to another approach. We give a
theoretical discussion of previous approaches in the
literature and compare some of them to our own ap-
proach using the null dataset. The ability of our
method to detect high frequency artefacts is described
and the effect of these artefacts on parametric time-
domain models of the underlying correlation structure
is illustrated and discussed. We finish with a discus-

FIG. 10. Comparison of the theoretical density for Rc against the
nonparametric density estimate. The estimated cdf F(x) is trans-
formed using the inverse of the theoretical cdf and plotted against x
(thick line), which would give a straight line (dashed line) if the
theoretical distribution was true. The right hand scale indicates P
values in powers of 10 for the theoretical distribution and indicates

the close agreement well into the tails of the two distributions.



r
o
a
p
c
c
f
q
e
t

t
u
s
(
r
t
e
B
c
f

w
d
s
e
p
m
i

c
d
t
t
t

v

374 MARCHINI AND RIPLEY
sion of extensions of our approach to handle event-
related designs.

Computations were carried out in the statistical sys-
tems S-PLUS and R. Spatial smoothing of the normal-
ized spectral densities was used only within slices.

IOP Dataset Experiments

The spectral analysis was first applied to the visual
experiment in the IOP dataset. We also analysed the
auditory experiment with clear-cut results which are
not shown here.

Figure 11 shows the P value image for a slice of the
IOP dataset, analyzed for a response to the visual
stimulus, using our proposed Rc statistic and its theo-
etical distribution. Figure 12 shows Fig. 11 thresh-
lded to show only P values below 1024 and overlaid on
n image of the slice. (The threshold level was chosen
urely for illustration purposes.) Color is used to indi-
ate differences in activation within and between the
lusters. The image obtained using a threshold derived
rom the empirical statistic distribution at higher fre-
uencies was not visibly different to Fig. 12. This is as
xpected, since the theoretical and empirical distribu-
ions are very similar.

For comparison, this experiment was analyzed using
he approach proposed in Bullmore et al. (1996) who
se the Cochrane-Orcutt procedure to analyse periodic
timulus designs. The Cochrane-Orcutt procedure
Cochrane and Orcutt, 1949) is applicable to any auto-
egressive process of order P (Diggle, 1990) and simplifies
he prewhitening equations; iteration can be used to
stimate the parameters of the AR(P) process and b. In
ullmore et al. (1996) the response to the stimulus was

haracterised by sinusoidal terms at the fundamental

FIG. 11. P Value image for a slice of the IOP dataset analyzed for
response to the visual stimulation.
requency and first two harmonics and an AR(1) model
as assumed and validated. A statistic called the Fun-
amental Power Quotient (FPQ) was then used to as-
ess the significance of the response to the stimulus at
ach voxel. This statistic is defined to be the ratio of the
ower at the fundamental frequency (FP) to its esti-
ated standard error SE(FP). Thus the FPQ statistic

s analogous to our own Rc statistic, in which the nu-
merator I(vc) represents the power at the fundamental
frequency vc and f~vc!̂ estimates its standard error. In
the original paper trends were dealt with by includ-
ing linear terms in the design matrix along with the
sinusoidal terms, but in our own main implementa-
tion of this approach we dealt with trends using the
nonlinear methods described before.

Figure 13 shows the P value image for the same slice
onsidered in Fig. 11, using the AR(1) plus nonlinear
etrending approach. The P values were derived using
he theoretical unit-mean exponential distribution of
he FPQ statistic. Figure 14 shows Fig. 13 thresholded
o show only P values below 1024 and overlaid onto an

image of the slice. Compared to Fig. 12 there is consid-
erably more activation detected. Assuming that we
should only see activation within the visual cortex plus
one in 10,000 false-positives, the amount of activation
detected in other areas suggests that for this dataset
the theoretical distribution is not an adequate fit.

In Bullmore et al. (1996) the inadequacy of the the-
oretical distribution was recognised and then adjusted
for, using an auxiliary randomization experiment. We
stress that the approach proposed in this paper does
not require a randomization experiment to obtain the
true null distribution. Our method is completely self-

FIG. 12. P Value image (shown in Fig. 11) thresholded to show P
alues below 1024 and overlaid onto an image of the slice. Colors

indicate differential responses within each cluster. An area of acti-
vation is shown in the visual cortex, as well as a single “false-

positive,” that occurs outside of the brain.
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375DETECTING SIGNIFICANT ACTIVATION IN fMRI
calibrating since information at higher frequencies is
utilised to estimate the true null distribution, which
has been shown to agree extremely well with its theo-
retical form.

We attempted to recalibrate the AR(1) method by
estimating the null distribution using all those pixels
thought to lie well away from areas of activation. We
used all voxels in the top half of each slice to construct
an empirical distribution and then a recalibrated
threshold corresponding to a P value of 1024 was cal-
culated. This method of recalibration could not nor-

FIG. 13. Nominal P value image for a slice of the IOP dataset
shown in Fig. 11), analyzed for a response to the visual stimulation
sing an AR(1) model and the nonlinear detrending proposed in this
aper.

FIG. 14. P Value image (shown in Fig. 13) thresholded to show P
alues below 1024 and overlaid onto an image of the slice. Colors
indicate differential responses within each cluster.
mally be used since we will not know where to expect a
response to the stimulus. Figure 15 shows this thresh-
old applied to the P value map shown in Fig. 13 and
overlaid onto an image of the slice. The areas of acti-
vation that remain are very similar to those detected
by our own approach, shown in Fig. 12. After having
corrected the null distribution the threshold was much
higher than the one proposed by the theoretical distri-
bution, which explains for the difference in the colors of
the clusters when comparing Figs. 12 and 15.

Comparison to Other Approaches

In this paper we have proposed a nonparametric
model for the underlying correlation structure of the
voxel time series, whereas most other approaches de-
scribed in the literature assume a particular paramet-
ric form. We give a theoretical discussion of the current
approaches in the literature and in subsequent sec-
tions illustrate how some of these approaches compare
to our own.

The approach of (Bullmore et al., 1996) has already
been described. In the context of the present paper this
is equivalent to fitting a parametric model to the pe-
riodogram to estimate the spectral density and may
fail to estimate adequately the spectral density at the
one frequency of interest in periodic designs. Also the
AR(1) model fails to take into account any prior trend
removal, in that low frequency terms are almost com-
pletely removed and the resulting shape of the spectral

FIG. 15. P Value image (shown in Fig. 13) thresholded using a
ecalibrated estimate of the 1024 P value point of true null distribu-

tion. This was calculated from the empirical distribution of all voxels
in the top half of each slice, which were assumed to contain no
activation in response to the stimulus. The surviving voxels are
shown in color against the same nominal P value scale used in
Fig. 14.
density will lie outside the range of the AR(1) model.
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Failure to model adequately the spectral density has
two effects on the distribution of the test statistic for
b Þ 0. One, as observed by Bullmore et al. (1996) and
llustrated in the previous section, is to produce a sys-
ematic bias in the null-hypothesis distribution, which
an be corrected (at considerable computational cost)
y a randomization experiment. The other effect is to
ncrease the random variability of the test statistic and
hereby produce a less powerful test.

Somewhat higher-order autoregressive-moving-av-
rage processes are used to model the correlation struc-
ure in Locascio et al. (1997) using a model selection
pproach, but these still fail to accurately model the
orrelation structure in up to 5% of voxels. Using high-
rder AR(p) processes (using p up to 30 or so) is a

well-known method for estimating the spectral density
of a time series. It is not a recommended one and some
authorities (for example, Thomson, 1990) warn
strongly against its use.

The Statistical Parametric Mapping (SPM) approach
(Friston et al., 1994a, 1995b,c; Worsley and Friston,
1995) assumes a linear model of the form in Eq. (4). In
certain situations spatial filtering of the response at
each time point is recommended. This is intended to
reduce the “noise” in the data but will also blur any
response to the stimulus, reducing the high resolution
afforded by fMRI. Temporal smoothing is applied at
each voxel time series. The difference between the re-
sulting correlation structure and its estimate is then
assumed to be small enough for valid inference using a
generalised least squares procedure. An estimate of the
true degrees of freedom for the null distribution is used
to provide more accurate P values. This amounts to
assuming a parametric form for the spectra density
determined by the smoothing and estimating a single
scale constant for the noise. The papers give various
suggestions to estimate the scale of the noise, but more
is targeted at the frequencies which determine the
accuracy of the estimation of b (and hence the test
statistics for b Þ 0). In the current implementation of
this approach within the SPM99 software an option is
also given to use an AR(1) model for the underlying
correlation structure. In this approach the AR(1) coef-
ficient is estimated at each voxel and then averaged
over voxels.

Zarahn et al. (1997) suggested two parametric mod-
els for the underlying correlation structure, which
were fitted to voxel-averaged power spectra using an
iterative nonlinear least squares procedure. This
global estimate was used at all voxels within the linear
modeling framework of (Worsley and Friston, 1995)
but produced results inconsistent with the assumption
of a spatially stationary correlation structure. The use
of temporal smoothing resulted in false-positive rates
closer to the theoretical distribution, but this was re-
ported only at the 5% significance level and thus pro-

vided no information about the agreement elsewhere in
the distribution. Also, the results were sensitive to the
use of high pass filter used.

Purdon and Weisskoff (1998) proposed an AR(1) plus
white noise model for the underlying correlation struc-
ture for each voxel time-series. The AR(1) component is
used to model large low-frequency effects (trends),
while the white-noise component represents scanner
noise. This model is fitted using an iterative nonlinear
least squares procedure to a voxel averaged power
spectrum from a real dataset. The parameter estimates
are then used to simulate datasets which are used to
illustrate the consequences of assuming different mod-
els for the correlation structure. It is demonstrated
that prewhitening using the model that generated the
datasets performs much better than methods which
assume a white-noise model and marginally better
than a proposed extension to the approach of Worsley
and Friston (1995), although results are only shown in
detail for P values between 1021 and 1022. The spectral
density of an AR(1) plus white noise model is deter-
mined by three parameters and is not much more flex-
ible than an AR(1) model.

Lange and Zeger (1997) apply a spectral time series
model in the form (9). By expressing Xt in (4) as the
convolution of the periodic stimulus design with a pa-
rameterized delay function, the form of the hemody-
namic modulation is estimated simultaneously with b
at each voxel, using an iterated generalised least
squares procedure. The spectral density is estimated
using a simple average of squared residuals around
each of the fundamental and harmonic frequencies,
which is also smoothed in space. Thus the correlation
structure is estimated nonparametrically, but this as-
pect of the approach was not the focus of the paper and
more robust approaches were not considered. A simple
average filter may be reasonable at high frequencies,
but not at lower frequencies near the fundamental
frequency, where there is likely to be larger variation
in the underlying spectral density of detrended voxel
time series. Our experiments using this method agree
with the discussants of the paper who question the
identifiability of the parameters. This means that dif-
ferent combinations of the parameters may provide an
equally good fit to the data, leading to redundancy in
the model. The optimization required to provide esti-
mates of the parameters in the delay function ensures
that this method runs very slowly.

Null Dataset Experiments

We applied three different parametric time-domain
approaches and our own nonparametric spectral ap-
proach to the null dataset. A periodic stimulus consist-
ing of 10 complete cycles in the 200 scans was assumed.
The fundamental frequency of this design will be 1
cycle per minute and is the same as that of the IOP

dataset visual experiment. We compared the empirical
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statistic distribution to its theoretical in each case us-
ing PP-plots shown in Fig. 16. The straight line at 45°
ndicates exact agreement with the theoretical distri-
ution. As P value decreases from left to right the lines

will tend to become increasingly more erratic as there
are fewer observations in the tail of the distribution to
accurately represent that part of the distribution. The
plot in the top-left shows PP-plot obtained using the
AR(1) approach proposed by (Bullmore et al., 1996). It
shows that the empirical distribution is significantly
longer tailed than the theoretical and that the AR(1)
model is systematically underestimating the spectral
density of the underlying correlation structure. The
plot in the top-right shows how the situation is worse
in this example when the linear detrending employed
in (Bullmore et al., 1996) is replaced by the more re-
sistant nonlinear detrending that we have proposed in

FIG. 16. Four methods are compared by plotting empirical P
theoretical values. In each case the straight line indicates exact agre
by (Bullmore et al., 1996); top right: the AR(1) model proposed by (B
detrending proposed in this paper; bottom left: the global AR(1) app
density estimation approach proposed in this paper. The solid lin
calibration across all frequencies.
this paper. The plot in the bottom left shows the results
of applying the AR(1) approach implemented within
the SPM99 software as described above. In this case,
the empirical distribution has much shorter tails than
the theoretical due to the global estimate systemati-
cally overestimating the spectral density of the under-
lying correlation structure. The plot in the bottom right
shows the results of applying our own nonparametric
spectral approach. The solid line represents the empir-
ical distribution obtained at the fundamental fre-
quency of activation and the dashed line represents the
empirical distribution obtained from a range of higher
frequencies. The dashed line effectively represents a
very large sample from the null distribution and it can
be seen that both lines are very similar to each other
and in good agreement with the theoretical distribu-
tion.

The ability of the method we propose to self-calibrate

lues obtained from the analysis of the null dataset against their
nt with the theoretical distribution. Top left: the approach proposed
more et al., 1996) with linear detrending replaced by the nonlinear
ch applied using SPM99; bottom right: the nonparametric spectral
for the assumed stimulus frequency and the dashed line is the
va
eme
ull
roa
e is
and the above evidence indicating that the method is
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well calibrated with the theoretical distribution pro-
vide strong support for its use.

High Frequency Artefacts

In the null dataset used for this paper and in some
others we have found artefacts which have been attrib-
uted to Nyquist ghosting. We have found these effects
to occur in narrow bands of high frequencies and have
been detected using the Rc statistic at these frequen-
ies. Figure 17 shows the P value image of the statistic

88 in a slice from the null dataset, thresholded at 1024

and overlaid onto an image of the slice. This indicates
that very significant high frequency effects occur in
this dataset and that these effects can occur well inside
the brain image.

Time-domain models like AR(1) models involve spec-
ification of both the form of the matrix V and the
innovations variance s2 and are susceptible to inaccu-
racies in the estimation of either. If no steps are taken
to remove or protect against high frequency artefacts
these will significantly bias the estimation of both V
and s2.

To illustrate this point we selected an individual
voxel from the null dataset containing a significant
high frequency artefact and applied three different
methods of detecting significance of a response to an
imaginary periodic stimulus. Figure 18 shows the pe-
riodogram of the selected time series after nonlinear
trend removal with a spectral density estimate shown
as a thick line. The high frequency artefact can be seen
as the two large periodogram ordinates at Fourier fre-
quencies 87 and 88, which correspond to a period of
approximately 6.8 s.

The first approach (Method I) was our implementa-

FIG. 17. P Value image of the statistic R88 in a slice from the null
dataset, thresholded at 1024, and overlaid onto an image of the slice.
tion of the AR(1) model proposed in (Bullmore et al.,
1996) using nonlinear detrending. The second ap-
proach (Method II) was the same as the first but with
the high frequency artefact at Fourier frequencies 87
and 88 included in the design matrix to stop the arte-
fact biasing the estimate of the underlying correlation
structure. The approach of this paper was the third
method used (Method III). The results are summarized
in Table 1. By comparing Methods I and II we see that
removing the high frequency artefacts from the time
series causes a large difference in both the estimated
AR(1) coefficient and the estimated innovations vari-
ance. The high frequency artefact masks the true cor-
relation structure and inflates the innovations vari-
ance. After removal the FPQ statistic is reduced and
becomes closer to that obtained using Method III. Even
then the difference is quite significant and is caused by
the inability of the parametric AR(1) model to accu-
rately fit the periodogram of the detrended voxel time
series. From this we can conclude that nonparametric
spectral estimation is a fast, accurate, and resistant
method of estimating the underlying correlation struc-
ture of each voxel time series.

Conclusion

Parametric models are in general very sensitive to
the assumptions they employ and significant loss in
statistical efficiency can occur if these assumptions are
invalidated. In contrast, if the assumptions of a para-
metric approach are valid then the use of a nonpara-
metric approach will result in a comparatively small
loss in efficiency. When considering voxel time series
from fMRI datasets there can be no guarantees that
the correct parametric model has been chosen and a
nonparametric approach seems the most prudent in
this context. We have demonstrated that the assump-
tions of commonly proposed time-domain models are
not resistant to high frequency artefacts.

FIG. 18. The periodogram of a voxel time series within an area of
the brain exhibiting the high frequency artefact. The trend was
removed and a spectral density estimate is shown as a thick line. The
high frequency artefact can be seen as the two large periodogram

ordinates at Fourier frequencies 87 and 88.
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379DETECTING SIGNIFICANT ACTIVATION IN fMRI
We believe that any approach proposed within the
time-domain may have difficulty providing resistant
estimates of both V and s2. There is also no guarantee
hat the parametric model chosen will be sufficiently
exible to capture the true form of the correlation
tructure even if artefacts are removed and a model
election procedure is employed. The flexible nonpara-
etric approach proposed here acts as an insurance

olicy against the results being badly affected by arte-
acts, and is guaranteed to be near-optimal under all
ealistic operational conditions. It also offers a quick
nd accurate way to check the calibration of the proce-
ure.

xtensions to Event-Related Designs

The direct analysis of nonperiodic designs will not be
s simple as that of the periodic designs, since the
esponse due to the stimulus will be spread over a
ange of frequencies. The use of iteratively reweighted
east squares in the spectral domain, as described
bove, provides the generalization to cope with nonpe-
iodic designs. The computational complexity that re-
ults in the use of the parameterized delay function in
ange and Zeger (1997) can be simply overcome by
sing a suitable set of basis functions Friston et al.

1995a) convolved with the stimulus {xt: t 5 0, . . . , n 2
} before transformation into the spectral-domain.
onparametric spectral density estimation from the

esiduals of the iteratively reweighted least squares
rocedure could then be used and P values for signifi-
ant activation at each voxel could be obtained using
he standard distribution theory of linear models. Ini-
ial results of this approach are very promising and
rovide the generalization afforded by the linear model
ogether with the accurate and resistant method of
onparametric spectral density estimation.
An alternative approach to nonperiodic designs is to

reat them as a series of time series which can be
ime-aligned. For example, we might have treated the
isual stimulus in the IOP dataset as five separate
0-scan blocks, with the stimulus occurring in the mid-

TAB

AR(1) coefficient s 2̂

ethod I 20.0027 15765
ethod II 0.2839 11276
ethod III — —

Note. Comparison of three different methods of detecting a respons
he null dataset containing a significant high frequency artefact. Me
t al., 1996) using nonlinear detrending; Method II: As Method
pectral-domain approach. The AR(1) coefficient and s 2̂ are not ap
hrough the spectral density estimate. Columns four, five, and six c
or each of the three methods. For methods I and II these three qua
II they correspond to I~vc!, f~vc!̂, and Rc.
le of each block. Fourier-transforming each block, av-
raging and then taking the squared magnitude would
esult in an analysis very similar to that presented
ere. This idea can be applied to any experiment in
hich stimuli occur at sampling points, and by phase
djustment of the Fourier transforms before averaging
an be extended to any experiment with known stim-
lus times.
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