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Partial least squares (PLS) analysis has been used to characterize

distributed signals measured by neuroimaging methods like positron

emission tomography (PET), functional magnetic resonance imaging

(fMRI), event-related potentials (ERP) and magnetoencephalography

(MEG). In the application to PET, it has been used to extract activity

patterns differentiating cognitive tasks, patterns relating distributed

activity to behavior, and to describe large-scale interregional interac-

tions or functional connections. This paper reviews the more recent

extension of PLS to the analysis of spatiotemporal patterns present in

fMRI, ERP, and MEG data. We present a basic mathematical

description of PLS and discuss the statistical assessment using

permutation testing and bootstrap resampling. These two resampling

methods provide complementary information of the statistical strength

of the extracted activity patterns (permutation test) and the reliability of

regional contributions to the patterns (bootstrap resampling). Simulated

ERP data are used to guide the basic interpretation of spatiotemporal

PLS results, and examples from empirical ERP and fMRI data sets are

used for further illustration. We conclude with a discussion of some

caveats in the use of PLS, including nonlinearities, nonorthogonality,

and interpretation difficulties. We further discuss its role as an

important tool in a pluralistic analytic approach to neuroimaging.
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Introduction

As the use of neuroimaging to study behavioral and cognitive

processes has grown, so too has the development of techniques

optimized to extract signals from these data. Indeed, neuroimaging

analysis has become a field of research in its own right, as

evidenced by this special issue of NeuroImage.
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One class of neuroimaging analysis methods has focused on

identification of reliable signal changes at the level of individual

image elements (i.e., voxels, or in the case of electromagnetic

imaging, sensors or timepoints). These are referred to as univariate

statistical analyses. A second family of methods has focused on the

examination of distributed patterns. These methods, called multi-

variate statistical analyses, take advantage of the spatial and

temporal dependencies among image elements. While the differ-

ence between univariate and multivariate methods can be linked to

a philosophical difference in assumptions related to the underlying

nature of brain organization, for the present purposes, they may be

considered to support different levels of inferences about neural

signals. Univariate methods are optimal for identification of signal

changes at specific points in time or space, while multivariate

methods enable inferences about differences across space and/or

time by combining information across these dimensions.

Partial least squares (PLS), which was introduced to the

neuroimaging community in 1996 (McIntosh et al., 1996), has

proven to be a robust method for extracting distributed signal

changes related to changing task demands (Task PLS). It has also

been applied to measuring distributed patterns that impact on task

performance (Behavior PLS) and finally to task-dependent changes

in the relation between brain regions. This latter application is an

assessment of functional connectivity or the correlation between

neural elements (Seed PLS).

The present paper serves to briefly review the development of

PLS for neuroimaging data and the recent extension of the method

to simultaneous spatial and temporal analysis (Duzel et al., 2003;

Hay et al., 2002; Itier et al., 2004; Lobaugh et al., 2001; Lobaugh et

al., submitted for publication; McIntosh et al., in press). We present

both the theoretical derivation of spatiotemporal PLS and its

application to functional MRI and event-related potential (ERP)

data.

Method and application

Partial least squares

The term bpartial least squaresQ refers to the computation of

the optimal least-squares fit to part of a correlation or covariance
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matrix (Wold, 1982). The part is the bcross-blockQ correlation

between some set of exogenous and dependent measures. PLS is

similar to principal components analysis (PCA), but one

important feature of PLS is that the solutions are constrained to

the part of the covariance structure that is attributable to

experimental manipulations or that relates to behavior. Moreover,

PLS is ideal for data sets where the dependent measures within a

block are highly correlated (e.g., neuroimaging data) because

items within a block are not adjusted for these correlations (c.f.,

canonical correlation).

The present implementation of PLS is written entirely in Matlab

(Mathworks Inc). For positron emission tomography (PET) and

functional magnetic resonance imaging (fMRI), it is compatible

with Analyze format images (Mayo Clinic). For ERP and magneto-

encephalography (MEG) data, it will work with delimited text files

from any system, as well as Neuroscan bavgQ files. The user has the
choice of three layout options for displaying the results for up to

150 sensors: BESA theta/phi coordinates for 10/20 and 10/10 ERP

systems; EGI 128 channel systems; and CTF MEG systems. The

code is available at http://www.rotman-baycrest.on.ca:8080.

Data organization. The recent extension of PLS to the temporal

domain (spatiotemporal PLS, ST-PLS) allows for the same

mathematical formulation to be applied to fMRI, ERP, and MEG

data, where there is meaningful information in a measured time

series. For the purposes of the explanation that follows, we will use

the term belementQ to refer to voxels, electrodes, and MEG sensors.

As with all multivariate approaches, PLS operates on the entire

data structure at once, which requires that the data be in matrix

form. Every row of the matrix contains data for one observation in

one condition. An observation may be a single subject in the case

of a group study or a trial within a condition in the case of single

subject analysis. These rows are arranged such that observations

are nested within condition blocks. With n observations and k

conditions, there are n * k rows in the matrix. The columns of the

data matrix contain the signal measured for each element at each

timepoint. The first column has intensity for the first element at the

first timepoint, and the second column has the intensity for the first

element at the second timepoint. With m elements and t timepoints,

there are m * t columns in the matrix.

Mathematical description of task ST-PLS analysis. As indicated

above, the data matrix contains the m elements, measured across t

timepoints, which are made into single vectors for each of n

observations measured in each of k conditions. Thus, the data

matrix M has n * k rows and m * t columns.

Two versions of PLS have been used in the literature: one using

orthonormal contrasts and the other using mean centering. These

two approaches give virtually identical results when scaling

differences (see below) are taken into account.

Contrast approach. A design matrix C is constructed with

orthonormal contrasts, coding for the k�1 degrees of freedom in

the experimental design. The contrasts are made for each subject so

C has n * k rows and k�1 columns. The operation:

Y ¼ CT4 M� 14 1T4M
� �

=n 4 k
� �

= n 4 k � 1ð Þ ð1Þ

yields a k� 1 � m * t matrix Y containing the covariance of each

timepoint for each element with each contrast in C (superscript T

represents a matrix transpose, and 1 is a vector of ones n * k in

length).
Y is then subjected to a singular value decomposition (SVD):

USV½ � ¼ SVD YT
� �

ð2Þ

where:

U*S *VT ¼ YT
� �

ð3Þ

From the decomposition, U is an m * t � k� 1 orthonormal

matrix containing the element saliences, V is an k� 1 � k� 1

orthonormal matrix of saliences for the contrasts, and S is a

diagonal matrix of the k� 1 nonzero singular values.

The multiplication:

B ¼M*U ð4Þ

produces B, an n * k � k� 1 matrix of Brain Scores that indicate

the variation of task effects across subjects and conditions. The dot

product computed at each timepoint, rather than summing across

time, provides a brain score for each timepoint, or a Temporal

Score, for each subject and condition. This provides a rapid

assessment of where, in a temporal sense, the major distinctions

among tasks are expressed.

The multiplication:

D ¼C*V ð5Þ

produces D, an n * t � k� 1 matrix of Design Scores that are the

set of contrasts that code the effects resulting from the SVD.

Mean-centering approach. Starting with the same data matrix

M, described above, columnwise averages are created within each

task, yielding matrix T, a k by m * t matrix of task means.

Tdev ¼ T�1 * 1T *T
� �

=k ð6Þ

Where matrix 1 is a column vector of ones of length k. Tdev is a

columnwise mean-centered matrix. The operation:

UdevSdevVdev½ � ¼ SVD TT
dev

� �
ð7Þ

where:

Udev * Sdev *V
T
dev ¼ TT

dev

� �
ð8Þ

provides Udev, an m * t � k orthonormal matrix containing the

element saliences, Vdev an k � k orthonormal matrix of task

saliences, and Sdev a diagonal matrix of the k singular values. In

this case, the final diagonal element of Sdev is zero, representing the

grand mean, which is eliminated through mean centering.

As stated before, the contrast and deviation methods produce

identical analytic results save for scaling differences. For example,

when the first k�1 columns of Udev are used:

UT 4Udev ¼ I ð9Þ

where I is an identity matrix.

The contrasts in D (the design score matrix) are identical to the

pattern in Vdev. The scaling differences are found in the values of S

versus Sdev, because of the difference in the values of Y versus

Tdev. If the raw cross-product, rather than the covariance, is used

with the design contrast method, the values in the two singular

value matrices are the same.

Behavior ST-PLS. The analysis of brain-behavior correlations starts

with the same matrix M used for task ST-PLS, and a second matrix

A containing the behavioral measures of interest. These could be

 http:\\www.rotman-Ebaycrest.on.ca:8080 


A.R. McIntosh, N.J. Lobaugh / NeuroImage 23 (2004) S250–S263S252
reaction time or accuracy measures acquired during the experiment

or any other measures of interest (e.g., physiological measures,

demographics). For simplicity, we assume there are behavior

measures for each of the k conditions in the experiment. Matrix A

may contain any number of columns, although we assume a single

measure for this illustration (i.e., A is n * k � 1).

Within each of k conditions, the columns of A and M are z

score-transformed such that:

Rk ¼ AT
k 4Mk= nk � 1ð Þ ð10Þ

where Ak and Mk are the behavior measures and element time

series measures during condition k, respectively. Matrix Rk is the

correlation of the element time series across subjects or trials with

the corresponding behavioral measures for condition k. These

matrices are stacked into one large matrix R and subjected to SVD:

URSRVR½ � ¼ SVD RT
� �

ð11Þ

where UR is an m * t � k orthonormal matrix containing the

element saliences, VR is a k � k orthonormal matrix of task

saliences, and SR is a diagonal matrix of the k singular values. As

with the deviation analysis in the task ST-PLS, the weights inVR are

interpreted as contrasts, indicating task-dependent differences in

brain-behavior correlations. In most cases, one column of VR will

contain the same values for all conditions, thus identifying patterns

of brain-behavior correlations that are similar across conditions.

Brain scores (matrix B) are computed as in Eq. (4) above.

Calculation of the correlation between the scores within condition

k and the corresponding behavior measure for each column of B

yields values with a pattern similar to those in VR. Confidence

intervals calculated around these latent variable correlation profiles

can provide a more conventional assessment of the reliability of

brain-behavior correlations (see below).

Assessment of significance. The arbitrary decisions regarding the

number of LVs to retain (e.g., scree plots, percentage of variance

accounted for) and which of the task and element weights to

consider important are minimized by providing a statistical assess-

ment of the LVs. This is done using permutation tests for the LVs

and bootstrap estimation of standard errors for the element saliences.

The permutation test assesses whether the effect represented in a

given LV is sufficiently strong, in a statistical sense, to be different

from random noise. The standard error estimates of the saliences

from the bootstrap tests are used to assess the reliability of the

nonzero saliences on significant LVs. The resampling across

different levels may approximate a mixed model design, yielding

optimal sensitivity and level of inference, without increased false-

positive rates, although the exact mathematical description of this

relation requires further clarification (Strother et al., 2002).

Statistical significance of each LV is assessed by means of a

permutation test using 500 permutations (Edgington, 1980; Good,

2000; McIntosh et al., 1996; Nichols and Holmes, 2002). This is

accomplished using sampling without replacement to reassign the

order of conditions for each observation. ST-PLS is recalculated for

each new sample, and the number of times the permuted singular

values exceed the observed singular values is calculated. Exact

probabilities are presented for all LVs, providing an objective means

for determining the number of LVs to be retained.

An important requirement for the use of permutation testing is the

exchangeability of data between rows. By folding time and space

into the same dimension of the data matrix, the exchangeability
requirement is met. Had the matrix maintained a three-dimensional

form and the permutations extended into the time domain,

exchangeability would not have been met because the temporal

correlation in the element signal would not be maintained.

To determine the stability of the maximal element saliences

identified on the LVs, the standard errors of the saliences are

estimated through 100 bootstrap samples (Efron and Tibshirani,

1986). Bootstrap samples are generated using sampling with

replacement, keeping the assignment of experimental conditions

fixed for all observations. ST-PLS is recalculated for each bootstrap

sample. A salience whose value depends greatly on which

observations are in the sample is less precise than one that remains

stable regardless of the sample chosen (Sampson et al., 1989). The

ratio of the salience to the bootstrap standard error is approximately

equivalent to a z score if the bootstrap distribution is normal (Efron

and Tibshirani, 1986). The primary purpose of the bootstrap is to

determine the elements whose responses show reliable experimental

effects, thus no corrections for multiple comparisons are necessary

since no statistical test is performed. The statistical assessment is

done through permutation tests, applied at the level of the full

spatiotemporal pattern, as described above.

Bootstrap estimation also is used to derive confidence intervals

for the latent variable correlations in the behavior ST-PLS. As the

correlations are bounded (�1 to +1), the upper and lower

percentiles of the bootstrap distribution are used to establish

confidence limits (see fMRI example below).

To summarize, the significance of each LV is determined from

permutation tests, and the reliability of the contribution of each

nonzero element salience is then determined using bootstrap

estimates of the salience standard errors.

During resampling with either permutations or bootstrapping,

there is a possibility of axis rotation (a change in the order of

extracted LVs) and reflection (a sign change in saliences) when the

SVD is performed on the resampled matrix. These arbitrary

reflections and rotations can be corrected using a Procrustes rotation

of the resampled SVD outcome to the original SVD outcome (Milan

and Whittaker, 1995). In the case of permuted data sets, the

Procrustes rotation ensures that the assessment is done on the exact

same effect space for each iteration. For bootstrapped data, the

Procrustes rotation reduces the estimation bias because of reflection

and rotation.

The Procrustes rotation is computed as follows (for complete

explanation and proof, see Milan and Whittaker, 1995): given Vorig,

the original matrix V from the SVD step in a PLS analysis (Eqs. (7)

and (11)), and Vresamp, matrix V from the SVD of a resampled data

set, the goal is to define a k � k orthogonal matrix Q that rotates

the points of Vresamp to a position as close as possible to Vorig in a

least squares sense. Assuming both Vorig and Vresamp are

orthonormal, then Q can be calculated by:

NOP½ � ¼ SVD VT
orig 4Vresamp

� �
ð12Þ

Q ¼N*PT ð13Þ
The rotation is then applied to both Vresamp and Uresamp:

V̂Vresamp ¼Vresamp *Sresamp *Q ð14Þ

and

ÛUresamp ¼Uresamp *Sresamp *Q ð15Þ

Rescaling Vresamp and Uresamp by Sresamp before rotation allows

the redistribution of the covariance accounted for by each LV to be
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carried through the transformation. The singular values of the

rotated matrix can be obtained by calculating the columnwise

square root of the sums-of-squares.

In the statistical assessment of PLS, it may seem that using the

bootstrap procedure on each element is somewhat redundant. At

first blush, it would seem reasonable to perform a permutation test

at both the level of the singular values and individual voxels. For

reasons described below, we have favored the use of bootstrap to

estimate the reliability of each voxel’s contribution to the pattern

captured by a given LV. Permutation tests indicate whether a signal

can be differentiated from noise but do not index signal reliability.

Although detection and reliability are strongly related, they are not

mutually exclusive.

Fig. 1 serves to further illustrate this point. In all three panels,

the estimated voxel salience from a single LV from a PLS

analysis of PET data is plotted on the x-axis. The y-axis is the

bootstrap estimated standard error for each voxel. Voxels in the

top panel (Fig. 1A) are circled if the estimated salience for that

voxel was statistically different from noise using permutation

tests (two-tailed P b 0.01), while voxels in the middle panel (Fig.

1B) are circled if the ratio of salience to standard error exceeded

a threshold of 2.57, which has an approximate two-tailed

probability of 0.01 assuming a unit normal distribution. In the

bottom panel (Fig. 1C), we conducted a repeated-measures

ANOVA using the same contrast derived by the PLS analysis

to assign a parametric P value to the voxels in the image. As

with the top panel, voxels are circled if the estimated P value was

less than 0.01. The two plots based on voxelwise P values (Figs.

1A, C) are virtually identical, so we will treat them as the same

for the present discussion.
Fig. 1. Plot of voxelwise bootstrap estimated standard errors versus singular vecto

blue have saliences showing a significant P value determined by permutation; (B) v

(absolute value); (C) voxels circled in blue have a weight with a significant P valu

indicates the approximate region where each method of statistical assessment ide
While the overlap across plots is obvious, there are also unique

features in each. For the permutation test, there are clusters of

voxels that are uniquely identified as significant (circled in green,

Fig. 1A). These voxels are not circled in the bootstrap plot because

of their relatively large standard error. On the other hand, in the

bootstrap plot, two clusters of voxels are uniquely circled in green

(Fig. 1B). These not only have relatively low standard error, but also

low saliences. Because the permutation test and ANOVA are most

sensitive to the bstrengthQ of a signal, voxels with large saliences are
favored, whereas the bootstrap ratio will reflect both large salience

and reliability. By emphasizing reliability, the bootstrap adds an

important complement to the overall assessment of significance

done in PLS, in that the technique allows one to disregard signals

that are not reliable. Note that the reliability issue would be equally

applicable to parametric tests, as the permutation test and ANOVA

identified the same significant voxels. A second feature of bootstrap

estimation is the ability to make inferences about voxels having low

but reliable signals. In terms of neural processes, such voxels will

contribute to the shaping of a distributed response. Put another way,

voxels with the strongest signals could determine the overall

direction of a distributed response, while lower intensity signals

may bfine tuneQ the response. Another interesting consequence of

using reliability estimates is the ability to make inferences about

bstableQ zero effects. If one follows the line of voxels whose

salience is estimated as zero, there is a distinct continuum of

standard errors for such voxels. Voxels with a zero estimate and a

lower standard error are essentially stable at zero, indicating

noninvolvement in the distributed pattern captured by PLS.

Conversely, voxels with a zero estimate and large standard error

would be considered unreliable. The ability to identify stable zeros
r weights (salience) from a PLS analysis of PET data. (A) Voxels circled in

oxels circled blue have a ratio of salience to standard error greater than 2.57

e determined by repeated-measures ANOVA. In each panel, the green circle

ntifies unique voxels.
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provides a level of inference not attainable by derivation of P

values. This would be of particular utility when comparing different

age or patient groups in being able to attribute group differences to

noninvolvement of a particular region (indicated by a stable zero)

versus increased variability within a group (indicated by a large

standard error). The advantage of using reliability estimation,

whether using standard errors or confidence intervals, enables a

level of precision not accessible through more commonly reported

probability assessments.

Interpreting ST-PLS results. As described above, the ST-PLS

analysis provides pairs of patterns defining experimental differ-

ences or brain-behavior correlations in a spatiotemporal signal.

Fig. 2 contains simplified results from a task ST-PLS analysis

(modified from Lobaugh et al., 2001). The top panel shows grand

average ERP waveforms from 1 of 32 electrodes from a two-

condition simulation. In this example, Condition 1 latency was

modeled to be longer than Condition 2 latency for the early peak

(timepoints 10 to 25).
Fig. 2. Interpreting spatiotemporal PLS. (Top) One of 32 channels from a simulate

2. (Middle) Left: task saliences for the first latent variable; right: temporal brain

saliences with the ERP or fMRI data for each timepoint, thus are a summary of th

selected channel. Positive saliences indicate timepoints where the signal differences

Negative saliences indicate timepoints where the signal differences have a negativ

differences between Condition 1 and Condition 2 are indicated by the red markers

that the peak of Condition 2 was not reliably larger than the signal in Condition
Following a significant statistical assessment using permutation

tests, the pattern expressed on the LV is examined. This starts with

inspection of the task saliences, which indicates the contrast among

the conditions (Vdev, Fig. 2, middle row, left panel). The pattern

indicates that the effect distinguishes Condition 1 and Condition 2.

Since there are only two conditions in this example, the weights are

equal and opposite in sign. A first approximation of the temporal

expression of those differences can be seen by examining the

temporal brain scores (Fig. 2, middle row, right panel). The

positive temporal scores, peaking at timepoint 20, are larger for

Condition 1 than Condition 2. This indicates that Condition 1

amplitudes are generally higher than Condition 2 amplitudes

during that interval. The negative temporal scores at earlier points

indicate a period where Condition 2 amplitudes are higher than

Condition 1 amplitudes. The spatiotemporal expression of this

pattern of differences is shown in the ST-PLS electrode saliences

for this sensor (Udev; Fig. 2, bottom row, left panel). As for the

temporal scores, the sign of the saliences indicates the direction of

the task differences. Saliences greater than zero indicate timepoints
d two-condition spatiotemporal data set. Blue: Condition 1; Red: Condition

scores for each condition. These are the dot products of the ERP or brain

e task differences across all elements. (Bottom) Left: ERP saliences for the

have a positive relation to the design saliences (Condition 1 N Condition 2).

e relation to the design saliences (Condition 1 b Condition 2). Right: Stable

at the bottom of the plot and by the shading between the two curves. Note

1 at that same timepoint.
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where the Condition 1 signal is higher than Condition 2. Saliences

less than zero indicate that Condition 1 signal is lower than

Condition 2. Zero and near-zero saliences indicate periods where

the two conditions did not differ. The bootstrap results indicated that

the amplitude differences were reliable at nine timepoints (large

markers overlaid on the electrode salience). The strongest saliences

are for the timepoints at the first peak, which maps onto the latency

shift seen in the grand averages (Fig. 2., bottom row, right panel).

Application: ERP experiments

We demonstrate the application of ST-PLS for ERP data in a

study examining the impact of configural manipulations on face

processing (Itier and Taylor, 2002; Itier et al., 2004). This study

measured the impact of two configural changes—contrast reversal

and inversion—on the encoding and immediate and delayed

recognition of faces.

Methods. Data from 32 young adults (16 females; 20 to 33 years,

mean age 25.3 years) had normal or corrected-to-normal vision.

Stimuli were 720 gray-scale pictures of unknown faces (50%

female) and were either upright, inverted, or upright, but contrast-

reversed. A single face type was presented every block, and within

a block, one third of the faces repeated one time each. Half of the

repeated faces repeated immediately and half repeated after one

intervening face. Condition dEncodeT was defined as the first

presentation of faces correctly recognized later. Similarly, the

dMemoryT conditions consisted of only correctly recognized trials.

Stimuli were presented centrally on a computer screen for 500 ms

with a 1320-ms ISI. To minimize eye movements, subjects fixated

on a centered cross appearing during the ISI. They pressed the

spacebar of a keyboard to repeated stimuli.

Electrophysiology. EasyCaps containing 35 electrodes including

three ocular sites were used to record ERPs. The EEG was

recorded continuously via NeuroScan with a 500-Hz sampling rate

and an amplification gain of 500 via SynAmps. Cz was the

reference lead during acquisition; an average reference was

calculated off-line. EEG was epoched into 1-s sweeps, including

a 100-ms baseline. Off-line averaging was performed for each of

the face types and memory conditions; averages were digitally

filtered (0.8–60 Hz). Trials contaminated with ocular movements

(z100 AV) between 0 and 700 ms were rejected. The ST-PLS

analysis was conducted on this 700-ms interval (excluding the

prestimulus baseline) for the 32 scalp electrodes; the EOG channels

were not included.

Results. The ST-PLS analysis indicated that the primary impact of

configural manipulations was similar across the three memory

conditions. Three latent variables were significant, LV1 identified a

difference between upright and inverted faces; LV2 was the

difference between contrast-reversed faces and the other two

conditions; only the third LV indicated an interaction of face-type

and memory condition. To illustrate how the ST-PLS results are

interpreted, we show partial data for the first LV; the full report can

be found in Itier et al. (2004).

The task saliences for LV1 (P = 0.001) are shown in Fig. 3

(top) and indicate that the largest difference was between upright

and inverted faces, with contrast-reversed faces intermediate. The

ERP saliences for this effect are shown in the middle of Fig. 3. The

blue lines indicate the spatiotemporal pattern across the 32 ERP
channels, and the markers at the top of each channel indicate the

maximal saliences stable by bootstrap estimation. One of the first

features that can be seen when examining the saliences is that the

face inversion effect was seen at two time periods. Strong negative

saliences are seen posteriorly, peaking just before 200 ms, followed

by an extended period of negative saliences, maximal around 350

ms. The effects reverse polarity at frontal electrodes, but as the

saliences are smaller frontally, the conclusion here is that the

differences over posterior, lateral channels dominate the inversion

effect. The topographies of the peak saliences are shown in the

lower part of Fig. 3, highlighting the posterior lateral distribution

for the inversion effect.

Once the peak saliences are identified, a full interpretation,

especially for ERP data, is facilitated by examining the grand-

averaged ERP waveforms. To simplify the explanation, we have

plotted three electrodes from the right hemisphere (P8, PO10, O2)

in Fig. 4. Saliences are shown in the left plots, and the grand-

averaged ERPs for the three face types, collapsed across memory

condition, are shown in the right plots. For both, timepoints of

stable differences are indicated by markers at the top of each plot.

The change in where the differences are expressed is clearly seen:

the early saliences are strongest at the more lateral channel (P8).

This maps onto a difference after the P1 component, up to and

including the N170 component, and the transition to the P2

component for the inversion effect, which dominates the differ-

ences at P8. The later saliences map onto the much longer duration

upright/inverted differences after the peak of the P2.

Thus, the conclusion from this part of the ST-PLS analysis is

that amplitude differences over two time periods, over the same

parieto-occipital channels, are required to explain upright/inverted

differences. When measured using traditional measures of peak

amplitude and latency, the P1 appeared to be involved in face

inversion (Itier and Taylor, 2002), but this peak was not

consistently part of the pattern when the whole epoch and all

electrodes were analyzed. In a separate analysis, ST-PLS was run

across a shorter interval (0–250 ms, data not shown here), and the

P1 was part of the face-inversion effect. One factor that contributes

to whether effects are identical between traditional and ST-PLS

analyses is whether an effect identified at a single peak is the best

reflection of the global ERP differences involved in the exper-

imental effect. As the distribution of the long-latency differences

was similar to the short-latency differences, this provides support

for the idea that processing inverted faces involves a reactivation of

face-processing regions.

Application: fMRI experiment

Data were obtained from a perceptual memory study comparing

auditory and visual processes. The full report of this experiment is

in preparation. This paper considers data from four of the eight

conditions in the study to illustrate the use of ST-PLS for fMRI

(McIntosh et al., in press).

Methods. Data from eight participants (aged between 23 and 36,

three males) were used in the analyses. All were right-handed

and reported normal hearing, and normal or corrected-to-normal

vision.

The experimental conditions involved making judgments on

triplets of either auditory or visual stimuli in two fMRI runs. For

the auditory condition, bandpass-filtered noise stimuli were played

through air-conducting headphones. In the visual condition,

bandpass-filtered noise stimuli were displayed as visual textures,



Fig. 3. Spatiotemporal PLS on ERP data. (Top) Task saliences for LV1 indicate that the primary distinction was between upright (UP, blue) and inverted faces

(INV, red). For simplicity, only the design saliences for the encoding condition are shown; the values for the other two conditions were essentially the same.

The near zero weighting for the contrast-reversed (CR, green) indicates that across the scalp, CR amplitudes were intermediate to UP and INV. (Middle) ERP

saliences for all channels. Timepoints stable by bootstrap estimate (bootstrap ratio N 4) are indicated by markers on top of each channel. Y-axis reflects the range

of ERP saliences for this LV. (Bottom) BESA head plots of the peak saliences, illustrating the posterior-lateral distribution of the differences.
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projected onto a rear-projection screen and viewed by the

participants through a mirror mounted in the MR head coil. On

each trial, three 500-ms noise stimuli appeared successively, with a

blank (silent/gray) interstimulus interval of 500 ms. The center

frequency of the bandpass filter differed for each stimulus. After

the offset of the third stimulus, there was a 1500-ms response

window, during which observers pressed one of three keys. For the

auditory temporal sequencing task, observers indicated whether the
tone with the highest pitch was presented first, second, or third. For

the visual temporal sequencing task, observers indicated when the

visual texture with the highest spatial frequencies appeared. The

intertrial interval was chosen pseudorandomly and was 3, 5, 7, 9,

or 11 s. The auditory baseline was the fMRI data from the 11-s

intertrial intervals across all auditory tasks. The visual baseline was

the fMRI data from the 11-s intertrial intervals across all the visual

tasks.



Fig. 4. Spatiotemporal PLS on ERP data. (Left) Saliences from Fig. 3 are plotted for three channels in the right hemisphere. (Right) Timepoints of stable

upright/inverted differences are shown on the ERPs for upright (UP, blue), inverted (INV, red), and contrast-reversed (CR, green) faces. Note that as the CR

amplitudes become more distinct from UP and INV (e.g., O2), the saliences defining the upright/inverted distinction become smaller.
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Performance was equated across subjects and conditions by

establishing a psychophysical accuracy threshold for each subject.

Thresholds were established the day before testing and were set

such that a subject had roughly 80% accuracy across all tasks.

fMRI procedure. Regional activity was measured using a 1.5 T

Signa MR scanner with a standard head coil (CV/I hardware,

LX8.3 software: General Electric Medical Systems, Waukesha,

WI). Eighteen axial slices were acquired (64 � 64, voxel size =

3.25 mm), each with a thickness of 7 mm. Functional scans were

obtained using a single shot T2*-weighted pulse sequence with

spiral readout, offline gridding, and reconstruction (TR = 2000 ms,

TE = 40 ms, flip angle 808, 90 � 90 effective acquisition matrix).

Data preprocessing was performed using Analysis of Func-

tional NeuroImaging (AFNI) software (http://afni.nimh.nih.gov/,

Cox, 1996). Time series data for each subject were spatially

coregistered within a scanning run to correct for head motion by

using a 3D Fourier transform interpolation and detrended to a

constant reference scan by using a fifth-order polynomial. Motion-
corrected images were then spatially transformed to an fMRI spiral

scan template which was registered to the MNI atlas used in

SPM99 (http://www.fil.ion.bpmf.ac.uk/spm/, Friston et al., 1995).

The transformation of each subject to the spiral template was

achieved in SPM99 using a 12-parameter affine transform with

sinc interpolation.

ST-PLS analysis. As for ERP, in event-related fMRI, the time series

length is a user-defined parameter, which can be modified

depending on the particular design used, that is, rapid event-

related versus extended ITI. The hemodynamic response (HR) for

any voxel typically takes 6–20 s to rise and fall. A btemporal lag

windowQ is defined to accommodate the major response changes.

The absolute value of the MR signal is susceptible to low

frequency drift from physiological or environmental noise. In

constructing the data matrix, the MR signals are normalized within

a trial with respect to the signal at the onset of the trial. The

normalization maintains the amplitude information of the BOLD

signals and is similar to baseline correction in ERP analyses. This

 http:\\afni.nimh.nih.gov 
 http:\\www.fil.ion.bpmf.ac.uk\spm 
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normalization step also allows averaging BOLD signals of the

same condition across scan sessions to increase the signal-to-noise

ratio.

Task and behavior ST-PLS analyses were performed on these

data. For both, a 12-s temporal window was specified for each

event (i.e., six TRs). For the experimental conditions, stimulus

onset was defined at the onset of the first of three stimuli in the

triplet. The onset of baseline was taken 4 s after the end of the trials

preceding the 11-s ITIs.

Reaction time measures from each subject were used for the

behavior ST-PLS. As there were no behavioral measures in the

baseline conditions, only the auditory and visual temporal

sequencing tasks were analyzed. Reaction time measures were

expressed as z scores from each subject’s mean and standard

deviation across all conditions.
Fig. 5. Spatiotemporal PLS on fMRI data. Singular image and temporal brain score

the Y-axis of the singular image and is expressed in seconds from stimulus onset. T

MNI atlas space. Voxels in the image are highlighted according to the magnitude

panel indicate the expression of task effects across time and are computed for each

10, the temporal scores show maximal differentiation 6 to 10 s after stimulus on
Results

Task ST-PLS. Two significant LVs were identified from the task

analysis. The first LV (Fig. 5) was a main effect of Task versus

Baseline (P b 0.001). The second LV depicted an interaction of task

by stimulus modality. For the present paper, we focus only on the

first of these LVs. The spatiotemporal activity pattern for LV1 is

shown in Fig. 5 (top). From this pattern, the peak differentiation

appears to occur at 6 to 8 s after stimulus onset (three to four TRs),

which is corroborated by the temporal scores (Fig. 5 (bottom)). The

response for individual voxels, selected from the maxima in the

singular image, is shown in Fig. 6 and illustrates that most of the

regions in the activity pattern show a response function similar to the

temporal scores.

Behavior ST-PLS. The first LV from the analysis of brain with

reaction time (RT) was significant by permutation test (P = 0.010)
s for the first latent variable (LV1). Time from stimulus onset is indicated on

he X-axis gives the approximate location of the axial slice in reference to the

of their stability (bootstrap ratio N 4). Temporal brain scores in the bottom

task. Consistent with the more extensive activation differences at T = 6 to

set. Abbreviations: TS = temporal sequencing, Base = baseline.



Fig. 6. Spatiotemporal PLS on fMRI data. Hemodynamic response functions from selected regions identified in LV1 (MNI voxel coordinates below each

panel). Responses are expressed as percent change from stimulus onset (T = 0) and are averaged across subjects (FSE).
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and reflected a common correlation of RT with brain activation in

both temporal sequencing tasks. The second LV was remarkably

nonsignificant (P = 0.95).

The spatiotemporal pattern for LV1 shows distinct temporal

fluctuations in correlation patterns (Fig. 7). Positive saliences

(yellow) are related to slower RT, and negative saliences (blue)

are related to faster RT. Also shown are scatterplots of RT with

the brain scores. While the correlation is strong for each

condition, there is a potential outlier (circled symbol). Although

the bootstrapping procedure reduces the impact of outliers (in the

sense that the correlation would be less reliable), it is advisable in

such cases to reanalyze the data without the potential outlier to

ensure the reliability of the pattern. In the present case, reanalysis

excluding the outlier did not change the pattern of ST-PLS

results.

Fig. 8 shows RT-HRF correlations for four dominant voxels in

the LV. The first, a voxel in occipital cortex (MNI coordinate: X =

0, Y = �80, Z = �4), shows a positive correlation with RT for both

tasks, which was maximal 6 s after stimulus onset. A second voxel,

situated much more dorsally near supplementary motor cortex (X =

�4, Y = 0, Z = 64) also showed a positive correlation, peaking 2 s

later than the occipital voxel. Regions showing a negative

correlation with RT included left inferior prefrontal (X = �40, Y

= 36, Z = 8) and medial prefrontal cortex (X = �4, Y = 56, Z = 0).
The correlation pattern in medial prefrontal cortex is of potential

theoretical interest given its activity differences identified in the

task ST-PLS.

Caveats in PLS

Computation

Computational overhead may be a concern when conducting

PLS analysis, especially in the case of fMRI or ERP/MEG data

when high density spatial or temporal sampling is used. For an

average-sized event-related fMRI study, an analysis including 500

permutations and 100 bootstraps takes 30 to 60 min when running

on a Linux-based Intel workstation with 4GB of RAM, depending

on the workstation load. In systems with parallel architectures, it is

possible to distribute the resampling operations across CPUs,

reducing total computation time.

Linearity and orthogonality

The PLS model we use assumes the measured effects relate

linearly to either the task manipulations or to behavior (i.e., the

exogenous measures). While this is likely a reasonable assump-

tion in most cases, the possibility of nonlinear relations is a

consideration, especially in ERP and MEG data. Versions of PLS

are used in other disciplines, where it is possible to quantify



Fig. 7. Spatiotemporal PLS on fMRI data. Singular image (A) and correlations of brain scores and RT for the behavior ST-PLS analysis. Correlations are

plotted both as bar graphs with bootstrap estimated 95% confidence intervals (B) and as scatterplots (C).
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nonlinearities (Hasegawa et al., 1996; Martin et al., 1995), and

we are exploring the use of these algorithms for neuroimaging

data.

A related issue is that our version of PLS uses singular value

decomposition to reexpress the relation between the neuroimaging
data and the exogenous measure. The extraction of mutually

orthogonal patterns is mathematically elegant, but this may not

adequately capture the btrueQ dependence between the patterns. For

this reason, many researchers have advocated the use of

Independent Components Analysis (ICA), where the algorithms



Fig. 8. Spatiotemporal PLS on fMRI data. Correlation profiles for selected voxels identified in the behavior ST-PLS analysis. Correlations are plotted for the

two tasks across the time window from stimulus onset (T = 0). Coordinates below each panel are referenced to the MNI atlas space.
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work only to maximize the independence between patterns rather

than forcing orthogonality (McKeown et al., 1998).

While ICA is theoretically attractive because of this problem,

we have found little difference in using ICA versus SVD as part of

PLS and actually noted that SVD performed better than ICA in

extracting reliable signals (Lin et al., 2003). Thus, the theoretical

attraction of ICA seems to be problematic when considered from

the perspective of statistical sensitivity and robustness.

Finally, it is important for researchers to make the distinction

between mathematical constraints and underlying biology. For

example, we have demonstrated that orthogonal patterns identified

by PLS can be considered as interacting neural systems when the

dependence among the constituents of these patterns is explicitly

assessed (McIntosh et al., 2003).

Interpretation

Interpretational difficulties in PLS often arise when the

dimensions identified do not map easily to the expectation of the

researcher. While PLS identifies the maximal effects in the data set,

it is possible that these effects do not correspond to the a priori

expectations of the researcher. We have utilized a post hoc contrast

procedure to aid in the interpretation of PLS solutions. For example,

in a parametric delay-match to sample task, we projected linear and

quadratic contrasts to the design scores to further characterize the

dominant trends in a given effect (Grady et al., 1998).

More recently, we have developed a bnonrotatedQ version of

PLS, wherein a priori contrasts are used to restrict the patterns

derived from PLS. This is possible because of the relation of the

singular values from the SVD to the total sums-of-squares from the

data matrix. Specifically:
If S is a vector of k singular values derived from SVD on matrix

M, then

X
S 2
k ¼

X
M2

ij ð16Þ

Each of the squared singular values divided by the sum of the

squared singular values indicates the proportion of the total sums-

of-squares accounted for from M. It is also true, given Eqs. (7) and

(8), that if one takes matrix V, which contains the design saliences,

from the SVD on matrix M,

VT4M ¼ U4S ð17Þ

substituting D for U * S, then sums-of-squares for each vector in D

yields the squared singular values, which is the figure of merit for

the permutation test in PLS.

If we introduce a new matrix X, which is the same size as V,

and contains a different set of design saliences or contrasts, and

write:

XT 4M ¼ E ð18Þ

then, as with D, the sums-of-squares for each vector in E are

essentially the singular values and can be assessed using the same

permutation algorithm used for the regular PLS.

The unrotated approach was applied to the fMRI example

described earlier, using the contrasts: [�1 �1 1 1]; [�1 1 �1 1] and
[1 �1 �1 1], which code the modality effect, the task effect, and

the interaction. We observed that only the modality effect and

interaction terms were significant by permutation. This is also what

the regular PLS found.
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The unrotated version of PLS has the advantage of allowing a

direct assessment of hypothesized experimental effects, although

the interpretation may be difficult if nonorthogonal contrasts are

used. We tend to favor the rotated version since the solution

produced is optimal for the detection of the maximal experimental

effects, and the effects are mutually orthogonal. In most cases, this

gives PLS a distinct advantage as an exploratory data analysis tool

and provides an assessment of whether the intuitions one has about

an experiment are consistent with the data. Nevertheless, in studies

where there is a strong a priori hypothesis best captured by explicit

contrasts, it would be reasonable to run an unrotated version of

PLS to test the hypothesis, followed by a rotated version to further

explore the dominant effects in the data. We should note that where

univariate analyses are conducted using the same set of contrasts,

there will be similarities in the spatial patterns identified by PLS,

but because of the sensitivity to correlations among voxels, PLS

will always have greater power (see McIntosh et al., in press for

explicit comparison). Lukic et al. (2002) have also demonstrated

the improved signal detection properties of multivariate analyses

similar to PLS over conventional univariate approaches.
Conclusions

Starting from the basic emphasis on explaining the relation

between two or more blocks of data, PLS can address questions

ranging from identifying task-specific patterns of activity to

extracting neural activity patterns that predict behavior. The

flexibility of PLS, especially when used in concert with other

analytic methods, enables more thorough testing of specific

hypotheses and development of neurocognitive theory.

As noted in the introduction, PLS is part of a family of

multivariate data analyses, providing direct means of ascertaining

distributed patterns of activity that contribute to task differ-

entiation, predict behavior, or identify particular patterns of

functional connectivity. We have found PLS to be very powerful

in this regard, revealing patterns that are not easily derived from

other forms of analysis, yet at the same time complementing them.

The application of task PLS allowed for the identification of

general memory networks, on top of which were superimposed

collections of regions that were recruited for more specific memory

operations (Nyberg et al., 1996). We were also able to demonstrate

memory retrieval-dependent changes in functional connectivity

that were not detectable either by task PLS or univariate activation

analysis (Nyberg et al., 2000). In studies of learning and

awareness, we combined behavior PLS and with functional

connectivity analysis (seed PLS) to identify interregional inter-

actions involving left prefrontal cortex that were specific to

learning with awareness (McIntosh et al., 1999a). In a subsequent

study, again using behavior and seed PLS, we showed how the

hippocampus can be related to learning with and without

awareness depending on the pattern of functional connectivity

(McIntosh et al., 2003). These latter examples provided strong

evidence for the notion of Neural Context, where the functional

relevance of a brain area to a particular cognitive function depends

on the specific pattern of interregional communication (McIntosh,

2000, 2001, in press).

PLS applications to group studies have mostly occurred in the

study of normal aging (Grady and Craik, 2000), although there

have been applications to patient populations (Mentis et al., 2002;

Turner et al., 2003; Vanlancker-Sidtis et al., 2003). The focus of
these analyses has been on common task effects and the interaction

of group and task effects, and several have explored used behavior

and seed PLS to further characterize similarities and difference

across groups (Della-Maggiore et al., 2000; Grady et al., 2003;

McIntosh et al., 1999b). In all cases, PLS has been extremely

important in providing a full characterization of the unique neural

patterns within distinct groups, but also indicating where groups

are similar to one another. This latter point is often omitted in other

approaches but is vital for the complete understanding of different

age and patient groups.

Finally, we must emphasize that PLS, like any analytic

approach, is not a panacea. The complexity of the data that are

extracted from neuroimaging methods dictates that a single

analytic approach is insufficient. We concur with the position

advocated by others that a pluralistic approach will provide a much

better appreciation how the brain brings about human mental

function (Lange et al., 1999).
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