Individual Subject Analysis in AFNI
(Last Updated on June, 2011)

Now it’s time to analyze the pre-processed data.

We will be using an AFNI program called 3dDeconvolve to analyze the pre-processed data. This chapter is all about how to use 3dDeconvolve.

Here is a bit of introduction on 3dDeconvolve.

Program 3dDeconvolve was developed to provide deconvolution analysis of fMRI time series data a voxel by voxel basis (there is no assumption on any correlation relationships between voxels whatsoever). This has 2 primary applications:

I, estimation of the system hemodynamic response function (HRF)

II, multiple linear regression analysis of time series data

Given the input stimulus function(s), and the measured fMRI signal data, program 3dDeconvolve first estimates the HRF(s);

the HRF(s) is then convolved with the stimulus time series to yield the estimated response. Various statistics are calculated to indicate the “goodness” of the fit.

Note: This is intended to be a hands-on user guide on how to use 3dDeconvolve. If you would like to understand what 3dDeconvolve actually does in a theoretical sense, please go to the AFNI official web site and download the document on 3dDeconvolve at

http://afni.nimh.nih.gov/

**

Content

1. Step by Step instruction on How to Run 3dDeconvolve

2. Results

Appendix A. Signal Normalization after 3dDeconvolve (NOT Recommended)

Appendix B. Using 3dDeconvolve to Evaluate Your Experiment Design (Optional)

**

1. Step by Step instruction on How to Run 3dDeconvolve

On a voxel by voxel basis, 3dDeconvolve breaks down the pre-processed data into the following components.

Pre-processed_Data = (baseline + trend)(t) + (h(t-()s(() + noise(t)

h(t)= hemodynamic response at time t after neural activity

s(()= neural activity at time (
Pre-processed_Data and s(t) are known terms

(baseline + trend)(t), h(t) and noise(t) are unknown terms

3dDeconvolve program computes (baseline+trend)(t), h(t), s(t), noise(t) for each voxel independently.

Below is the step by step instruction on how to run 3dDeconvolve.

Step 1: Create experiment design files (also known as ideal files in AFNI)

An ideal file contains the stimulus trial timing information in your experiment. The number of ideal files depends on the number of trial types in your experiment. 1 ideal file per trial type.
For example, if your experiment has 4 trial types, then you will have sets of 4 ideal files.

An ideal file consists of rows and columns. Number of rows = total number of fMRI runs in the experiment. Each row contains the onset timing information(in seconds) for all stimuli within the trial type.

OK. Here is an example of an ideal file of a trial type. The name of this file is idealfile_1.1D, which has the following content:
20 23.8 80 200 350

*
10 40.4 70.5 300
10 100 200.5 300 400
As you can see, this file has 6 rows, which means there are 4 fMRI runs in total. The top row is for the 1st run and the 2th row is for the 2th run and so on. Each number refers to the local onset time for each stimulus in seconds. Local means that the beginning of each run starts from 0 seconds. (NO global onset time that is)

You also notice that the 2nd row is indicated with ‘*’, which means that there are no stimuli being presented on those runs.
At this point, you might wonder where you can specify the duration of each onset. No worries. Example 2 in this document will show you how the duration can be specified.
Step 2: Create a file called runs.1D where to record the onset for each run:

For example, let’s say we have an experiment with 6 runs and 231 timepoints per run, the runs.1D file, which consist of a single column, would be

0

231

462

693

Note: timepoint is the measurement unit, not seconds. Also notice the numbers are in global time scale in stead of local time scale. (the beginning of each run does not begin at timepoint 0)

Step 3: Combine all the pre-processed runs into a single concatenated run (You should have already done this in preprocessing.)
Use 3dTcat to perform concatenation. Assuming there are 6 pre-processed runs for this single subject.

>3dTcat -prefix scaled_allruns scaled_run1+orig scaled_run2+orig scaled_run3+orig scaled_run4+orig scaled_run5+orig scaled_run6+orig

Output: scaled_allruns+orig.{HEAD|BRIK}

Step 4: Create a mask file (You should have already done this in preprocessing.)

mask+orig.{HEAD|BRIK} that was created in preprocessing will be used in 3dDeconvolve.

Step 5: Create glt files (also known as contrast files)

Create a *.glt file for each contrast of your interest.

A glt file consists of a single row of digits.

The total # number of digits = The total # of regressors to be used in modeling your experiment

General speaking, a glt file has a few groups of digits. The first group is the baseline group, and followed by the trial type groups with 1 group per trial type.

For example, let’s consider a fMRI experiment design which has: 4 runs; 3 trial types (A; B; C); A uses 7 regressors; B uses 5 regressors; C uses 1 regressor.
The glt file, AvB.glt, for contrast AvB would be:

8@0 7@1 5@-1 0

The glt file, Avbaseline.glt, for contrast Avbaseline would be like:

8@0 7@1 5@0 1@0

The glt file, BvC.glt, for contrast BvC would be:

8@0 7@0 5@1 1@–1

The glt file, AandCvB.glt, for contrast BvC would be:

8@0 7@0.5 5@-1 1@0.5
The glt file, AandCvbaseline.glt, for contrast AandCvbaseline would be:

8@0 7@1 5@0 1@1

The glt file, AandBandCvbaseline.glt, for contrast AandBandCvbaseline would be:

8@0 7@1 5@1 1@1
The digits for the baseline group are ‘0’ always. There are eight ‘0’s because there are 8 baseline regressors being used. Why is it 8 baseline regressors? It’s because there are 2 baseline regressors being used for each run by default in the 3dDeconvolve program. However, if you don’t like the default value, You can use the –polort flag to set the value that you like.
-polort 1, which is the default, which means that there are 2 baseline regressors being used for each run,

-polort 2 means 3 baseline regressors are being used,

-polort 3 means 4 baseline regressors are being used,

-polort 4 means 5 baseline regressors are being used,

-polort 5 means 6 baseline regressors are being used, and so on.

So, what’s the optimal –polort for your experiment? There is no definitely answer for this as a matter of fact. You may use –polort 1 for every experiments.
Or, some might suggest that the –polort value associates with the duration of the longest run of your experiment.
If the longest run is between 0-150 seconds, use -polort 1.

If the longest run is between 151-300 seconds, use -polort 2.

If the longest run is between 301-450 seconds, use -polort 3.

If the longest run is between 451-600 seconds, use -polort 4.

If the longest run is between 601-750 seconds, use -polort 5, and so on.
There are 3 trial type groups here with 1 group for each trial type. A uses 7 regressors. Therefore, there are 7 digits in this group. Similarly, B has 5 digits in its group, and C has 1 digit in its group.

An entire HRF usually lasts about 10 to 14 seconds. If 1 TR = 2 seconds, then (typically and normally) 7 regressors are required to model an HRF for an event-related trial type(generally speaking, using 1 regressor per TR is almost always true regardless of the TR duration).
Here are the breakdown of the time coverage of the 7 regressors(TR=2 seconds):

Regressor #1 covers the HRF at 0-2 seconds.

Regressor #2 covers the HRF at 2-4 seconds.

Regressor #3 covers the HRF at 4-6 seconds.

Regressor #4 covers the HRF at 6-8 seconds.

Regressor #5 covers the HRF at 8-10 seconds.

Regressor #6 covers the HRF at 10-12 seconds.

Regressor #7 covers the HRF at 12-14 seconds.

However, to model an HRF for a block trial type, using 1 regressor is sufficient.
(Still confused? Read through the first couple examples in Step 6 might help.)

Step 6: It’s time to run 3dDeconvolve with the files created from Step 1 to 5.
It’s probably easier to show a few examples for demonstrations. There are 4 examples I want to show you.

· Example 1: On event-related fMRI design. (using variable shape HRF)

· Example 2: On block fMRI design using. (using fixed shape HRF)

· Example 3: On mixed fMRI design. (using both variable and fixed shape HRF)

· Example 4: Adding motion correction parameters into the baseline and trend (Optional)

· Example 5: Similar to Example 4. It’s another way to make use of motion correction parameters (Optional and outdated)

· Example 6: Stimulus trials are not locked with a full TR (partitioning a full TR into sub-TRs is required) (Optional and outdated)
Note: Each example represents a unique set of data and a unique set of ideal files and all that. You may find some of the files names or labels are the same between the examples, but they are different files! So don’t get confused (
So, what is variable shape HRF and what is fixed shape HRF?

Variable shape HRF: user makes NO assumptions on the shapes of the HRFs for any trial types on any voxels. 3dDeconvolve will calculate the shapes of all the HRFs based on your data and your experiment design (the files created from step 1 to 5). For event-related trial type, variable shape HRF is recommended.

Fixed shape HRF: - user must make assumptions on the shapes of the HRFs for any trial types on any voxels. It is appropriate if you don’t want to constrain the HRF by assuming an HRF shape. For block trial type, fixed shape HRF is recommended.

Example 1: On event-related fMRI design. (using variable shape HRF)

Below is an example on how to write a 3dDeconvolve script.

Let’s say the name of the script is called event_related_decon_script. Here it is.

3dDeconvolve \

-input scaled_allruns+orig \

/*preprocessed data from step 3

-mask mask+orig \

/*mask from step 5

-concat runs.1D \

/*file from step 2
-polort 1 \

/*highest polynomial for the baseline. 1 represents a linear trend. 2 represents a quadratic trend and so on
-CENSORTR *:0..9 \

/*-CENSORTR is to exclude timepoints that you don’t want. This one is to exclude time indexes #0-9 in all runs.
-CENSORTR 2:37..45 \
/*exclude time indexes #37-45 in run 2
-CENSORTR 447..457 \
/*exclude global time indexes #447-457
-num_stimts 4 \

/*4 event-related trial types here: CO, CI, O and F.

-stim_times 1 idealfile_1.1D ‘TENT(0,12,7)’ \
/*7 regressors are being used to model an HRF of this trial type.
-stim_times 2 idealfile_2.1D ‘TENT(0,12,7)’ \
/*7 regressors are being used to model an HRF of this trial type.
-stim_times 3 idealfile_3.1D ‘TENT(0,12,7)’ \
/*7 regressors are being used to model an HRF of this trial type.
-stim_times 4 idealfile_4.1D ‘TENT(0,12,7)’ \
/*7 regressors are being used to model an HRF of this trial type.
-stim_label 1 CO \

/* the label of this trial type is CO.
-stim_label 2 CI \

/* the label of this trial type is CI.
-stim_label 3 O \

/* the label of this trial type is O.

-stim_label 4 F \

/* the label of this trial type is F.
-num_glt 10 \

/*10 contrasts here

-glt 1 CO.glt -glt_label 1 COvBase \

-glt 1 CI.glt -glt_label 2 CIvBase \

-glt 1 O.glt -glt_label 3 OvBase \

-glt 1 F.glt -glt_label 4 FvBase \

-glt 1 COvCI.glt -glt_label 5 COvCI \

-glt 1 COvO.glt -glt_label 6 COvO \

-glt 1 COvF.glt -glt_label 7 COvF \

-glt 1 CIvO.glt -glt_label 8 CIvO \

-glt 1 CIvF.glt -glt_label 9 CIvF \

-glt 1 OvF.glt -glt_label 10 OvF \

-iresp 1 irf_CO.irf \

/*-iresp gives you the shape of the HRF for each trial type
-iresp 2 irf_CI.irf \

-iresp 3 irf_O.irf \

-iresp 4 irf_F.irf \

-fitts full_model.fit \

/*shows the full regression model. Hopefully it looks somewhat like the experimental data time series

-errts residual_error.fit \

/*error term. data = full model + residual error

-fout -tout –rout \

/*outputs F-stats, t-stats, and R^2 (also known as correlation coefficient)

-bucket decon_results

/* decon_results+orig contains the statistical brain activation maps.
run the script

>chmod 775 event_related_decon_script
>./event_related_decon_script
OUTPUT: decon_results+orig.{HEAD|BRIK},

irf_CO.irf+orig.{HEAD|BRIK}, irf_CI.irf+orig.{HEAD|BRIK}, irf_O.irf+orig.{HEAD|BRIK}, irf_F.irf+orig.{HEAD|BRIK}, decon_fit.fit+orig.{HEAD|BRIK}

3dDeconvolve is a versatile command line program for AFNI. There is extensive documentation for this program in the AFNI official website.

3dDeconvolve performs multiple linear regression analysis of time series data and estimates HRF for each trial type on each voxel.

Given the input stimulus function, and the measured fMRI signal data the program first estimate the impulse response function; the impulse response function is then convolved with the time series to yield the estimated response. Various statistics are calculated to indicate the quality of the fit.

Commands explanations:

-input scaled_allruns+orig
specifies that the 3d+time dataset is to be read from file scaled_allruns+orig
-polort 1

 indicates that the baseline model should include a constant offset plus linear drift terms(-polort 1 is default)

-num_stimts 4

specifies the number of input stimulus files

-stim_times 1 idealfile_1.1D ‘TENT(0,12,7)’

7 regressors are being used to model an HRF of this trial type. We are assuming that an HRF lasts for 14 seconds in here. Regressors at 0-2, 2-4, 4-6, 6-8, 8-10, 10-12, 12-14 seconds(7 in total). You must use TENT for all event related trial types.
-iresp decon_irf.irf

Generates the 3d+time dataset irf_trial_type_X.irf+orig.{HEAD|BRIK}, which contains the HRF for each trial type.

-fitts full_model.fit

Generates the 3d+time dataset full_model.fit+orig.{HEAD|BRIK} which contains the full model fitted time series.

-errts residual_error.fit

Generates the 3d+time dataset residual_error.fit+orig.{HEAD|BRIK}, which is an error term: data = full model + residual error

-fout -tout –rout

these options give you F-statistics, t-statistics and correlation coefficient (R^2) for both full and partial regression models, as well as all the contrasts.

-bucket decon_results
Generates the 3d+time dataset decon_results+orig.{HEAD|BRIK}, which contains the statistical brain activation maps.

Example 2: On block design. (using fixed shape HRF)

Let’s say the name of the script is called

block_decon_script. Here it is.

3dDeconvolve \

-input scaled_allruns+orig \

-mask mask+orig \

-concat runs.1D \

-polort 1 \

-CENSORTR *:0..9 \

/*-CENSORTR is to exclude timepoints that you don’t want. This one is to exclude time indexes #0-9 in all runs.

-CENSORTR 2:37..45 \
/*exclude time indexes #37-45 in run 2

-CENSORTR 447..457 \
/*exclude global time indexes #447-457
-num_stimts 4 \
/*4 block trial types here.

-stim_times 1 another_idealfile_1.1D ‘BLOCK(30,1)’ \

/*You should use BLOCK to model an HRF for a block trial type. BLOCK function,
-stim_times 2 another_idealfile_2.1D ‘BLOCK(30,1)’ \

/*which uses only 1 regressor, is a variant of GAMMA function. In this case, each

-stim_times 3 another_idealfile_3.1D ‘BLOCK(30,1)’ \

/*block has a duration of 30 seconds. Generally speaking, the amplitude basis

-stim_times 4 another_idealfile_4.1D ‘BLOCK(30,1)’ \

/*function must be set to 1 regardless of the duration of the block you set.
-stim_label 1 c1 \

-stim_label 2 c2 \

-stim_label 3 c3 \

-stim_label 4 c4 \

-num_glt 5 \

/*5 contrasts here

-glt 1 c1vbase.glt -glt_label 1 c1vbase \

-glt 1 c2vbase.glt -glt_label 2 c2vbase \

-glt 1 c3vbase.glt -glt_label 3 c3vbase \

-glt 1 c4vbase.glt -glt_label 4 c4vbase \

-glt 1 C1VC2.glt -glt_label 1 C1VC2 \

-iresp 1 irf_c1vbase.irf \

-iresp 2 irf_c2vbase.irf \

-iresp 3 irf_c3vbase.irf \

-iresp 4 irf_c4vbase.irf \

-fitts full_model.fit \

-errts residual_error.fit \
-fout -tout -rout \

-bucket block_decon_results
run the script

>chmod 775 block_decon_script
>./block_decon_script
Example 3: On mixed fMRI design. (using both variable and fixed shape HRF)

Let’s say the name of the script is called

mixed_decon_script. Here it is.

3dDeconvolve \

-input scaled_allruns+orig \

-mask mask+orig \

-concat runs.1D \

-polort 1 \

-CENSORTR *:0..9 \

/*-CENSORTR is to exclude timepoints that you don’t want. This one is to exclude time indexes #0-9 in all runs.

-CENSORTR 2:37..45 \
/*exclude time indexes #37-45 in run 2

-CENSORTR 447..457 \
/*exclude global time indexes #447-457

-num_stimts 6 \
-stim_times 1 idealfile_1.1D ‘TENT(0,12,7)’ \

-stim_times 2 idealfile_2.1D ‘TENT(0,12,7)’ \

-stim_times 3 idealfile_3.1D ‘TENT(0,12,7)’ \

-stim_times 4 idealfile_4.1D ‘TENT(0,12,7)’ \

-stim_times 5 another_idealfile_1.1D ‘BLOCK(30,1)’ \

-stim_times 6 another_idealfile_2.1D ‘BLOCK(30,1)’ \
-stim_label 1 CO \

-stim_label 2 CI \

-stim_label 3 O \

-stim_label 4 F \

-stim_label 5 Block1 \

-stim_label 6 Block2 \

-num_glt 13 \

/*13 contrasts here

-glt 1 CO.glt -glt_label 1 COvBase \

-glt 1 CI.glt -glt_label 2 CIvBase \

-glt 1 O.glt -glt_label 3 OvBase \

-glt 1 F.glt -glt_label 4 FvBase \

-glt 1 COvCI.glt -glt_label 5 COvCI \

-glt 1 COvO.glt -glt_label 6 COvO \

-glt 1 COvF.glt -glt_label 7 COvF \

-glt 1 CIvO.glt -glt_label 8 CIvO \

-glt 1 CIvF.glt -glt_label 9 CIvF \

-glt 1 OvF.glt -glt_label 10 OvF \

-glt 1 Block1vbase.glt -glt_label 11 Block1vbase \

-glt 1 Block2vbase.glt -glt_label 12 Block2vbase \

-glt 1 Block1vBlock2.glt -glt_label 13 Block1vBlock2 \

-iresp 1 irf_CO.irf \
-iresp 2 irf_CI.irf \

-iresp 3 irf_O.irf \

-iresp 4 irf_F.irf \

-fitts full_model.fit \

-errts residual_error.fit \
-fout -tout –rout \

-bucket mixed_decon_results
run the script

>chmod 775 mixed_decon_script
>./mixed_decon_script
Example 4: Adding motion correction parameters into the baseline and trend (Optional)

(If rigid motion correction has already been done in preprocessing, example 4 doesn’t apply to you. Ignore example 4 for most of you I would say.)

3dDeconvolve \

-input scaled_allruns+orig \

-mask mask+orig \

-concat runs.1D \

-polort 1 \

-CENSORTR *:0..9 \

/*-CENSORTR is to exclude timepoints that you don’t want. This one is to exclude time indexes #0-9 in all runs.

-CENSORTR 2:37..45 \
/*exclude time indexes #37-45 in run 2

-CENSORTR 447..457 \
/*exclude global time indexes #447-457

-num_stimts 10 \

-stim_times 1 idealfile_1.1D ‘TENT(0,12,7)’ \

-stim_times 2 idealfile_2.1D ‘TENT(0,12,7)’ \

-stim_times 3 idealfile_3.1D ‘TENT(0,12,7)’ \

-stim_times 4 idealfile_4.1D ‘TENT(0,12,7)’ \
-stim_label 1 CO \

/* 4 trial types: CO, CI, O, F

-stim_label 2 CI \

-stim_label 3 O \

-stim_label 4 F \

-stim_file 5 ‘mc1.txt’ –stim_base 5 –stim_label 5 left-right \

-stim_base 5 \

/*you use -stim_base to add motion parameters into baseline and trend
-stim_file 6 ‘mc2.txt’ –stim_base 6 –stim_label 6 anterior-posterior \

-stim_base 6 \

/*the motion pararmeters generated from the rigid motion correction step in preprocessing
-stim_file 7 ‘mc3.txt’ –stim_base 7 –stim_label 7 superior-inferior \

-stim_base 7 \

/*six degrees of motions: left-right, anterior-posterior, superior-inferior, roll, pitch, yaw
-stim_file 8 ‘mc4.txt’ –stim_base 8 –stim_label 8 roll \

-stim_base 8 \

-stim_file 9 ‘mc5.txt’ –stim_base 9 –stim_label 9 pitch \

-stim_base 9 \

-stim_file 10 ‘mc6.txt’ –stim_base 10 –stim_label 10 yaw \

-stim_base 10 \

/*For each .glt file, add six additional ‘0’s. six ‘0’s because there are six motion parameters
-num_glt 10 \

-glt 1 CO.glt -glt_label 1 COvBase \

-glt 1 CI.glt -glt_label 2 CIvBase \

-glt 1 O.glt -glt_label 3 OvBase \

-glt 1 F.glt -glt_label 4 FvBase \

-glt 1 COvCI.glt -glt_label 5 COvCI \

-glt 1 COvO.glt -glt_label 6 COvO \

-glt 1 COvF.glt -glt_label 7 COvF \

-glt 1 CIvO.glt -glt_label 8 CIvO \

-glt 1 CIvF.glt -glt_label 9 CIvF \

-glt 1 OvF.glt -glt_label 10 OvF \

-iresp 1 irf_CO.irf \

-iresp 2 irf_CI.irf \

-iresp 3 irf_O.irf \

-iresp 4 irf_F.irf \

-fitts decon_fit.fit \

-fout -tout –rout -bucket decon_session
Example 5: Similar to Example 4. It’s another way to make use of motion correction parameters (Optional and outdated)

The method in this example is known as Residual Regression. See below.

Residual Regression - Detrending and denoising fMRI data

a, Theoretical Background

(theoretical background: Greg Siegel, Kristi Clark, Kate Fissell – University of Pittsburg)

· examines the partial correlation : “of the variance in Y NOT accounted for by X1, what is the variance accounted for by X2”;

· can be used for detrending and other noise removal (e.g NOISE DUE TO MOTION) by doing the de-noising first and running the GLM on conditions of interest on the residuals

[image: image1.jpg]PS->File

[image: image4.wmf]2

2

1

1

0

ˆ

X

X

y

b

b

b

+

+

=

[image: image5.wmf]1

1

0

ˆ

X

y

b

b

+

=

[image: image6.wmf]2

2

1

1

0

ˆ

X

X

y

b

b

b

+

+

=

b, Implementation

1. Run 3dDeconvolve with Condition A & write out the residuals (-errts option will generate the BRIK/HEAD that will contain the residuals);

2. Run 3dDeconvolve again having as input the residual brik and model condition B;

 The output is a bucket that has the partial correlation of A on Y;

 Output is the same size as the in-out 3d+time AFNI bucket;

c, Practical Results
Residual regression on motion parameters.

[image: image7.wmf]1

1

0

ˆ

X

y

b

b

+

=

RESULTS: Simple regression

[image: image2.jpg]F-t Inten Options

& Anat underlay
4 Func underlay

|

Anat[#0 #0 =

[d=251 Func[#28 patakavbase LC—

Thr [#31 patakavbase F——

= FAANAAZT
HEE R ik

=3

Anat 0 338
Func —482.4715: 544.786
Thr 0: 92.99993
M autoRange: 544.786

[10006 |Rotafr [&
M See TT Atlas Regions

L0100 ,,m—,_F

LT pos?

57.82544
10.65184

|
RETTi

=
0,179 ent= &

RESULTS: Residual Regression

[image: image3.jpg]7 7

F

[F 10000 R

The Following Scripts are meant to run Residual Regression

decon_step1

3dDeconvolve -input scaled_allruns+orig -mask mask+orig \

-concat runs.1D \
-polort 1 \

-num_stimts 6 \

-stim_file 1 'Rallruns.1D[0]' -stim_label 1 mc1 \

-stim_file 2 'Rallruns.1D[1]' -stim_label 2 mc2 \

-stim_file 3 'Rallruns.1D[2]' -stim_label 3 mc3 \

-stim_file 4 'Rallruns.1D[3]' -stim_label 4 mc4 \

-stim_file 5 'Rallruns.1D[4]' -stim_label 5 mc5 \

-stim_file 6 'Rallruns.1D[5]' -stim_label 6 mc6 \

-stim_minlag 1 0 -stim_maxlag 1 0 \

-stim_minlag 2 0 -stim_maxlag 2 0 \

-stim_minlag 3 0 -stim_maxlag 3 0 \

-stim_minlag 4 0 -stim_maxlag 4 0 \

-stim_minlag 5 0 -stim_maxlag 5 0 \

-stim_minlag 6 0 -stim_maxlag 6 0 \

-errts mc_residuals
decon_step2
3dDeconvolve -input mc_residuals+orig -mask mask+orig \

-concat runs.1D \

-polort 1 \

-censor censor.1D \

-num_stimts 4 \

-stim_file 1 'c1.1D' -stim_label 1 c1 \

-stim_file 2 'c2.1D' -stim_label 2 c2 \

-stim_file 3 'c3.1D' -stim_label 3 c3 \

-stim_file 4 'c4.1D' -stim_label 4 c4 \

-stim_minlag 1 0 -stim_maxlag 1 6 \

-stim_minlag 2 0 -stim_maxlag 2 6 \

-stim_minlag 3 0 -stim_maxlag 3 6 \

-stim_minlag 4 0 -stim_maxlag 4 6 \

-num_glt 3 \

-glt 1 c1vbase.glt -glt_label 1 c1vbase \

-glt 1 c2vbase.glt -glt_label 2 c2vbase \

-glt 1 c3vbase.glt -glt_label 3 c3vbase \

-fout -rout -tout -vout -bucket decon_task
Example 6: Stimulus trials are not locked with a full TR (partitioning a full TR into sub-TRs might be required) (optional and outdated)
If the duration of a stimulus doesn’t occupy a full TR, partitioning a full TR into sub-TRs might be necessary.

Let’s have a look at this example, which is identical with example 3 except we are partitioning a full TR into 2 sub-TRs on event-related trial types. For block trial types, partitioning is not necessary because block trials are less time sensitive.

3dDeconvolve \

-input scaled_allruns+orig \

-mask mask+orig \

-concat runs.1D \

/*same as example 3

-polort 1 \

-censor 'idealfile.1D[6]' \

/*same as example 3

-num_stimts 6 \

-stim_file 1 'idealfile.1D[0]' -stim_label 1 CO \

/*1-4 are event-related trial types. The number of rows for

-stim_nptr 1 2 \

/*idealfile.1D[0] – idealfile.1D[3] are doubled because 1 TR = 2 sub-TRs here.
-stim_file 2 'idealfile.1D[1]' -stim_label 2 CI \

/*Generally, the number of rows = total number of TRs * number of sub-TRs

-stim_nptr 2 2 \

-stim_file 3 'idealfile.1D[2]' -stim_label 3 O \

-stim_nptr 3 2 \

/*-stim_nptr <trial type> <n>, <n> = number of sub-TRs. <n>=2 in this example.

-stim_file 4 'idealfile.1D[3]' -stim_label 4 F \

-stim_nptr 4 2 \

-stim_file 5 'hrfBlock1.1D' -stim_label 5 Block1 \
/*same as example 3

-stim_file 6 'hrfBlock2.1D' -stim_label 6 Block2 \
/*same as example 3

-stim_minlag 1 0 -stim_maxlag 1 13 \

/*1 regressor per lag AND 1 lag per sub-TR ==>1 regressor per sub-TR.

-stim_minlag 2 0 -stim_maxlag 2 13 \

/*So, 14 regressors are needed in order to model an HRF of 14 seconds if 1 sub-TR = 1 second.

-stim_minlag 3 0 -stim_maxlag 3 13 \

/*lag 0 to lag 13 are required in this case.

-stim_minlag 4 0 -stim_maxlag 4 13 \

-stim_minlag 5 0 -stim_maxlag 5 0 \

/*same as example 3. Only 1 regressor is required for each block trial type.
-stim_minlag 6 0 -stim_maxlag 6 0 \
-num_glt 13 \

-glt 1 CO.glt -glt_label 1 COvBase \

/*total # of columns for each .glt file = total # of regressors

-glt 1 CI.glt -glt_label 2 CIvBase \

/*total # of regressors = total # of baseline regressors + total # of regressors for all trial types

-glt 1 O.glt -glt_label 3 OvBase \

-glt 1 F.glt -glt_label 4 FvBase \

-glt 1 COvCI.glt -glt_label 5 COvCI \

-glt 1 COvO.glt -glt_label 6 COvO \

-glt 1 COvF.glt -glt_label 7 COvF \

-glt 1 CIvO.glt -glt_label 8 CIvO \

-glt 1 CIvF.glt -glt_label 9 CIvF \

-glt 1 OvF.glt -glt_label 10 OvF \

-glt 1 Block1vbase.glt -glt_label 11 Block1vbase \

-glt 1 Block2vbase.glt -glt_label 12 Block2vbase \

-glt 1 Block1vBlock2.glt -glt_label 13 Block1vBlock2 \

-iresp 1 irf_CO.irf \
-iresp 2 irf_CI.irf \

-iresp 3 irf_O.irf \

-iresp 4 irf_F.irf \

-fitts full_model.fit \

-errts residual_error.fit \
-fout -tout –rout \

-bucket mixed_decon_results
**

2. Results

**

After running 3dDeconvolution successfully, it’s time to take a look at the statistical maps of your interests

Outline of Procedures:

Step 1: Launch AFNI and configure a few things in the GUI window. Most configurations should already be on default.

In AFNI GUI, choose and configure the following:

 - Select Original view

 - Click Define Overlay

 - Number of color panes: 10

 - Power-of-range of slider:2

 - Pos? : off

Step 2: In AFNI, open the 3dDeconvolution output file. Let’s say the output file is decon_results+orig.{HEAD|BRIK}
· Select Overlay

· Choose decon_results+orig
Step 3: In the Define Overlay window, choose the statistical map of your interests.

For example, you want to view the statistical contrast map COvBase
Choose Olay: CovBase_GLT#0_Coef
Choose Thr: COvBase_GLT#0_Tstat or COvBase_GLT_Fstat or COvCI_GLT_R^2
For example, you want to view the statistical contrast map COvCI
Choose Olay: COvCI_GLT#0_Coef
Choose Thr: COvCI_GLT#0_Tstat or COvCI_GLT_Fstat or COvCI_GLT_R^2
The HRF for each trial type can be found in a file called decon_irf.irf+orig.{HEAD|BRIK} if you use -iresp decon_irf.irf in your 3dDeconvolve script.

The statistical map for the full model can be found in a file called full_model.fit+orig.{HEAD|BRIK} if you use -fitts full_model.fit in your 3dDeconvolve script.

The statistical map for the residual error term can be found in a file called residual_error.fit+orig.{HEAD|BRIK} if you use -errts residual_error.fit in your 3dDeconvolve script.

For in-depth usage of 3dDeconvolve, please go to the AFNI official web site to obtain more information.

Y

Y

Y

a

b

c

d

e

f

g

g

f

e

d

c

b

a

g

f

e

d

c

b

a

X2

X1

X2

X1

Partial correlation :

prY,X2=e/(a+e) -contribution of X2 to what’s not explained by X1

Semipartial correlation:

Correlation :

srY,X2=e - unique contribution of X2 to Y;

rY,X2=e+g - total contribution of X2 to Y

� EMBED Equation.3 ���

� EMBED Equation.3 ���

Step 1:

Step 2:

R21 is variance in Y �accounted for by X1

R22 is variance in Y �accounted for by X1 and X2

R2=R22-R21 is the variance in Y uniquely accounted for by X2

= the correlation between X2 and Y from which X1 has been “partialled”

scaled_allruns+orig: Is the file that consists of your concatenated motion and spike corrected runs.

mask+orig: Is the mask you created in the preprocessing step

runs.1D: Is the file that contains one column that you create specifying which timepoints relate to which run. How to create this

file is explained in Step 2: Create a text file runs.1D in the coming section

Rallruns.1D[0]: Is the 1D file you obtain from the output of 3D Registration. If you open this file using emacs or any text editor you will notice that it will have 6 columns. Please note that

The first column is always denoted as column 0 not one. That is why the Rallruns files go from [0] to [5] but they are 6 in total.

-stim_minlag 1 0 -stim_maxlag 1 0 \

This line specifies that the impulse response function is to be estimated only between lag 0 and lag 0.

mc_residuals: The output of the first deconvolution step is stored in this file. This file will feed into the decon_step2.

Censor.1D: Is a file that consists of one column with either a one or zero. One means you want to include this time point in your regression and zero means you want to discard it.

c3.1D: Is what is called the ideal file which tells us to the absence and presence of stimuli.

Note: You can have your censor and c3, c2, c3,c4.1D files all put in one file which will consist in this case of 5 columns. Say the file is called idealfile, to obtain the 1st column you would right idealfile.1D[0], for the second column you will right idealfile.1D[1] etc.

6: Is the total number of lags that you have.

Num_stimts: Changes according to the kinds of stimuli

that you have.

Num_glt: Depends on how many contrast you want to see.

How to create a glt file is explained in step 4 below.

c1vbase.glt: Are glt files you create to see the strength of the response that resulted from a certain condition.

decon_task: Where all the statistical maps will be stored for you to view.

_1144138269.unknown

_1144138270.unknown

