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A b s t r a c t

We explore functional connectivity in nine subjects measured with 1.5T fMRI-BOLD in a longitudinal study of 
recovery from unilateral stroke affecting the motor area (Small et al., 2002). We found that several measures of 
complexity of covariance matrices show strong correlations with behavioral measures of recovery. In Schmah et 
al. (2010), we applied Linear and Quadratic Discriminants (LD and QD) computed on a principal components 
(PC) subspace to classify the fMRI volumes into “early” and “late” sessions. We demonstrated excellent classi-
fication accuracy with QD but not LD, indicating that potentially important differences in functional connectivity 
exist between the early and late sessions. Motivated by McIntosh et al. (2008), who showed that EEG brain-signal 
variability and behavioral performance both increased with age during development, we investigated complexity 
of the covariance matrix for this longitudinal stroke recovery data set. We used the sphericity index described by 
Abdi (2010), the number of principal components that minimize unsupervised generalization error of a covariance 
matrix (Hansen et al., 1999) and the classification accuracy of QD vs. LD. Although these approaches measure 
different kinds of complexity, all showed strong correlations with one or more behavioral tests: nine-hole peg test, 
hand grip test and pinch test. We could not demonstrate that either sphericity or unsupervised PC dimensional-
ity were significantly different for the “early” and “late” sessions using a paired Wilcoxon test. However, the 
amount of relative behavioral improvement was correlated with sphericity of the overall covariance matrix (pooled 
across all sessions), as well as with the divergence of the eigenspectra between the “early” and “late” covariance 
matrices. Complexity measures that use the number of PCs (which optimize QD classification or unsupervised 
generalization) were correlated with the behavioral performance of the final session, but not with the relative 
improvement. These are suggestive, but limited, results given the sample size, restricted behavioral measurements 
and older 1.5T BOLD data sets. Nevertheless, they indicate one potentially fruitful direction for future data-driven 
fMRI studies of stroke recovery in larger, better-characterized longitudinal stroke data sets recorded at higher field 
strength. Finally, we produced sensitivity maps (Kjems et al., 2002) corresponding to both linear and quadratic 
discriminants for the “early” vs. “late” classification. These maps measure the influence of each voxel on the class 
assignments for a given classifier. Differences between the scaled sensitivity maps for the linear and quadratic dis-
criminants indicate brain regions involved in changes in functional connectivity. These regions are highly variable 
across subjects, but include the cerebellum and the motor area contralateral to the lesion.
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1. Introduction

We studied functional connectivity metrics during 
stroke recovery, using 1.5T fMRI-BOLD data from 
a longitudinal study of the recovery of nine sub-
jects from unilateral stroke affecting the motor area 
(Small et al., 2002). The present study was moti-
vated by several previous results. First, the perfor-
mance of quadratic discriminant (QD) was far supe-
rior to linear discriminant (LD) in “early” vs. “late” 
within-subject classification on the same dataset, as 
shown in Schmah et al. (2010). Both LD and QD 
were computed using a principal components basis 
obtained from the spectral decomposition of the data 
matrix; the number of PCs was chosen to optimize 
classification accuracy. Each fMRI volume was 
classified as “early” if it was recorded in the first or 
second session (1 or 2 months post-stroke), or “late” 
if it was recorded in the third or fourth session (3 
or 6 months post-stroke). Quadratic discriminant, 
performed on a PC subspace, achieved high within-
subject, out-of-sample classification accuracy (QD 
median accuracy > 0.99 for every subject; LD medi-
an accuracy 0.61-0.90). The superior performance of 
QD relative to LD is likely due to the inequality of 
the within-class covariance matrices, and indicates 
that potentially important differences in functional 
connectivity exist between the early and late ses-
sions. Such differences likely reflect the functional 
re-organization that is known to be involved in 
recovery from stroke (see for example James et al., 
2009). We suggest that the hierarchy of LD and 
QD prediction performance is particularly useful 
for simultaneously probing longitudinal changes 
that are expressed in both the mean signal and/or in 
functional connectivity measures in BOLD fMRI.
Our second source for motivation of this study was 
McIntosh et al. (2008, 2010) who showed EEG 
brain-signal variability (i.e. complexity) increasing 
with age during development, with higher variability 
associated with higher performance. Our working 
hypothesis was that behavior and complexity would 
improve together with recovery from stroke. In this 
work, functional connectivity between voxels is 
captured by covariance matrices. To measure the 
complexity of covariance matrices, in this work 
we used the sphericity index of Abdi (2010) and 
the unsupervised dimensionality of Hansen et al. 
(1999). The first measure indicates complexity as 

the rate at which the eigenvalues of the covariance 
matrix decrease when we go from largest to small-
est eigenvalue, i.e. it measures the curvature of the 
eigenvalue plot or “spectrum”. The second measure 
indicates complexity as the number of degrees of 
freedom of the unsupervised Principal Component 
Analysis (PCA) model that has optimal predictive 
power. We computed these individually for the 
“early” and “late” within-class covariance matrices, 
and also for the overall data covariance matrix that 
includes all sessions. In addition, for the overall 
covariance matrix, we used a third complexity mea-
sure, the QD dimension that records the optimal 
dimensionality (the number of PCs) for distinguish-
ing early from late volumes using the quadratic 
discriminant. Finally we also measured the differ-
ence in eigenspectra of the two within-class covari-
ance matrices. We investigated correlations between 
these measures and behavioral measures of recovery 
from stroke.
The measures discussed so far give overall indica-
tions of the complexity of functional connectivity 
in our study. To investigate which brain regions are 
involved in the associated changes in mean BOLD 
and functional connectivity covariance patterns dur-
ing stroke recovery, we produced sensitivity maps 
corresponding to both linear and quadratic discrimi-
nants for the early vs. late classification, using a 
method based on Zurada et al. (1997) and Kjems et 
al. (2002). Sensitivity maps measure the influence 
of each voxel on the class assignments for a given 
classifier. Differences between the scaled sensitiv-
ity maps for the linear and quadratic discriminants 
indicate brain regions that are involved in changes 
in functional connectivity.

2. Methods

2.1. Data and preprocessing
The original study of Small et al. (2002) analyzed 
mean volumes of BOLD activation over four regions 
of interest in each hemisphere, in twelve subjects. 
We have previously (Schmah et al., 2010) used this 
data set to compare ten linear and nonlinear clas-
sification algorithms; please refer to that paper for 
a more detailed description of data collection and 
preprocessing. In the present paper, as in Schmah et 
al. (2010), we studied only nine of the subjects. The 
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subjects were studied in four sessions, at 1 and 2 
(early), and 3 and 6 (late) months post-stroke. Each 
session consisted of an fMRI imaging session and a 
series of behavioral tests.

2.1.1. fMRI data

Each of the four imaging sessions consisted of four 
continuous recording runs. During each run, the 
subject alternated two kinds of hand movement: 
tapping finger and thumb together, or wrist flexion/
extension; with rest breaks in between. The move-
ment was paced auditorily at 1 Hz. Within each 
run, the experimental design was: (12 seconds rest, 
24 seconds finger tap, 12 seconds rest, 24 seconds 
wrist flexion), repeated 8 times. Whole-brain fMRI 
volumes, each consisting of 24 axial slices, were 
collected at the University of Maryland in a 1.5T 
scanner (slice thickness: 6 mm; pixel size: 1.88 mm 
x 1.88 mm; FOV: 240 x 240 x 144; FA = 60; TE = 
35 ms; TR 4000 ms). In terms of the TR, the design 
of each run may be summarized as: (3 TR rest, 6 TR 
finger tap, 3 TR rest, 6 TR wrist flexion), repeated 
8 times.
The data for all 9 subjects were co-registered and 
motion-corrected via 12-parameter affine trans-
formations found using the Automated Image 
Registration (AIR) package (Woods et al., 1998). 
After this, for computational ease, we retained only 
7 axial fMRI slices, namely slices 2, 3, 4, 5, 21, 22 
and 23, where 24 is the top of the head. These slices 
were chosen to ensure coverage of the cerebellum 
and sensorimotor cortex. This results in 10499 
voxels. Next, for every “active” volume, i.e., those 
recorded during finger or wrist movement, we divid-
ed the intensity of each voxel by the mean of the 
corresponding voxel intensities in the previous two 
rest volumes, as proposed in McIntosh and Lobaugh 
(2004), to get rid of low-frequency temporal drifts. 
Following this normalization, the rest volumes were 
discarded. The first volume in each active block 
was also discarded to reduce the haemodynamic 
response transients intrinsic to fMRI imaging.
The data now consist of 256 “condition groups” 
of 5 consecutively recorded normalized volumes, 
each corresponding to either finger or wrist move-
ment, resulting in 1280 volumes overall. Within 
each condition group, the 5 volumes were recorded 
consecutively, in the same run of the same session, 
under the same experimental conditions (i.e. the 

subject was making the same movement). The final 
preprocessing step is to scale the data, separately for 
each subject using all 1280 volumes. We scaled each 
volume by subtracting the mean volume and divid-
ing each voxel by the mean standard deviation of the 
voxel intensity (pooled across all voxels).

2.1.2. Behavioral data

Of the several behavioral tests in the original study, 
we used the results of three tests (each was per-
formed on both the healthy and the impaired hand in 
each of the 4 sessions):
1.	S trength of the hand grip, measured with a dyna-

mometer.
2.	S trength of the pinch between thumb and index 

finger, measured the same way.
3.	 Performance on the nine-hole peg test, defined as 

1/(time to complete).
Each test produced two behavioral measures of 
recovery: improvement of performance and final 
performance. Improvement was calculated as the 
difference between the performance of the impaired 
hand on the first and last session, divided by the 
mean (across all 4 sessions) performance of the 
healthy hand. The final performance was computed 
as the ratio of the performance of the impaired hand 
on the fourth session only, again divided by the 
mean performance of the healthy hand.

2.2. Classification methods: adaptive
linear and quadratic discriminants
We used two probabilistic binary classification 
methods, both of which can be described in terms of 
a decision function, D, defined by

	 (2.1)

Note that if D(x) < 0 for a certain volume x, then that 
volume is predicted to be in class 0, while if D(x) > 
0, then it is predicted to be in class 1. If we assume 
that, a priori, membership in each of the two classes is 
equally probable, that is, P(class = 1) = P(class = 0) = 
0.5, then it is easily shown, using Bayes’ theorem, that

	 (2.2)
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Both linear and quadratic discriminant models assume 
that, for each class, the volumes are independent 
samples from multivariate Gaussian distributions. 
(For the fMRI volumes in this study, this assump-
tion is not strictly valid, so we therefore resample 
using more nearly independent groups of scans -- see 
the next subsection.) For the quadratic discriminant 
(QD), no further assumptions are made. Substituting 
Gaussian distributions into equation 2.2 leads to the 
following decision function (the discriminant):

	 (2.3)

Here, m
c 
and S

c
 are means and covariance matrices 

for class c, which are taken to be the sample means 
and covariances of the training data for class c. (See 
below for the case where one or both of the sample 
covariance matrices is not invertible.) Linear dis-
criminant (LD) is similar to quadratic discriminant, 
but makes the extra assumption that the covariance 
matrices of the two classes are equal. In place of S

0
 

and S
1
, we used S, the pooled sample covariance 

matrix (the mean of S
0
 and S

1
). The decision func-

tion simplifies to:

	 (2.4)

In our application, the number of voxels was greater 
than the number of observations (the number of 
volumes), so the sample covariance matrices were 
always rank-deficient and cannot be inverted. To 
avert this problem, we computed the first K princi-
pal components of the mean-centered data, which 
were the K eigenvectors of the covariance matrix 
corresponding to the highest eigenvalues. This was 
done efficiently using the singular value decomposi-
tion (see for example Mardia et al., 1979). We then 
applied LD and QD to the orthogonal projection 
of the data onto the first K principal components. 
Following Strother et al. (2002) and LaConte et al. 
(2003), the value of K was chosen to optimize the 
classification performance on a validation set. In 
our implementation, the K values tried were 1, 11, 
21, … 471, with the maximum value determined by 
the number of volumes per class in the training set, 

which was 480. We found that the optimal values of 
K ranged from 1 to 471. We call the combined meth-
od we have described, i.e., PCA followed by the 
application of LD (or QD) to an optimal-dimension 
PC subspace, “adaptive LD” (or QD).

2.3. Cross-validation procedures
The classification methods described above were 
applied as follows. Data for each subject were treated 
separately. For each subject, the preprocessed and 
mean-centered data from all sessions were pooled, 
resulting in 1280 volumes. We compared the methods 
in 20 trials, with each trial run on a different random 
splitting of the pooled data into two subsets: 75% 
training (960 volumes), 12.5% validation (160 vol-
umes), and 12.5% test (160 volumes). The splits of 
the data were created using a resampling method, with 
the sampling units being condition groups, defined by 
groups of 5 normalized volumes recorded consecu-
tively under the same experimental conditions (see 
Section 2.1). By assigning all volumes in the same 
condition group to the same subset (training, valida-
tion or test), we reduced the dependence between vol-
umes in different subsets. The sampling method was 
chosen to create training, validation and test sets that 
were balanced with respect to all experimental condi-
tions, i.e., for each of the three sets in a split, the set 
contained the same number of volumes corresponding 
to finger movement as to wrist movement, and equal 
numbers of volumes from each run. See Schmah et al. 
(2010) for details of the resampling method.
The purpose of the validation set was to tune hyper-
parameters before final testing of a method: the 
training set was used to build a family of classifiers 
that are identical except for certain hyperparameter 
values, and these classifiers were tested on the vali-
dation set in order
to determine the optimal hyperparameter value(s). 
The classifier with the optimal hyperparameter 
value(s) was then tested on the test set. In the present 
paper, the final classification accuracy is not reported 
(see Schmah et al., 2010), as it is the optimal hyperpa-
rameter values themselves that are of primary interest.

2.4. fMRI-based measures
We computed several measures that reflect the com-
plexity of our fMRI data as well as the development 
of functional connectivity across sessions. N denotes 
the number of volumes in the data set.
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–	 Sphericity index: This measure was calculated 
on the covariance matrix with the data pooled 
across all sessions. The sphericity index reflects 
the curvature of the plot of this matrix’s eigen-
values. An index of 1 corresponds to a perfectly 
spherical matrix, in which the eigenvalues are 
all identical. The smaller this index, the sharper 
is the drop in the eigenvalues when we go from 
largest to smallest. We define this index using 
the Greenhouse-Geisser correction to the Box 
criterion (Abdi, 2010):

	 (2.5)

–	 Divergence of eigenspectra of “early” and “late” 
covariance matrices: Here, instead of pooling the 
data across all sessions, we consider the two 
within-class covariance matrices (corresponding 
to early and late sessions) separately, and mea-
sure the degree of their divergence. The measure 
is defined as the Euclidean distance between the 
eigenvalues of the two matrices:

	 (2.6)

–	 QD dimensionality: The number of principal 
components that optimize the classification accu-
racy of a Quadratic Discriminant when classify-
ing the volumes into “early” and “late” sessions, 
as described in Section 2.2.

–	 Unsupervised dimensionality: The number of 
principal components that optimize the unsu-
pervised generalization error. Following Hansen 
et al. (1999), we measure this error using cross-
validation. The data are split into two sets of 
equal size: the training set and the test set. The 
mean training volume is subtracted from both 
training and test sets. We perform singular-value 
decomposition on the training set, and assume 
that the signal is contained in the first K principal 
components, and the remaining N-K-1 compo-

nents contain noise. The variance of the noise is 
estimated as the mean of these N-K-1 eigenval-
ues. After that, we approximate the covariance 
matrix of the training set as a sum of the signal 
and noise covariance matrices: the first is con-
structed with the K principal components of the 
original covariance matrix, and the second is the 
diagonal matrix with the estimate of noise vari-
ance on the diagonal. Then, we can see how well 
this approximation generalizes to the test set, i.e. 
calculate the posterior probability of the test set 
using a multivariate Gaussian distribution with 
the population covariance matrix approximated 
using the K PCs and noise estimate.

2.5. Sensitivity maps
Given any probabilistic binary classifier defined by 
a decision function D(x), we define the sensitivity of 
the classifier to voxel i as

	 (2.7)

where x(j) is the jth volume. This is similar to the 
definition in Zurada et al. (1997) and Kjems et al 
(2002), except that we have used the decision func-
tion instead of the probability of class membership. 
To explain this choice, note that the decision func-
tion (defined in Equation 2.1) is equivalent to

	 (2.8)

where σ(z) = 1 / (1 + exp(-z)). Thus

	 (2.9)

where σ´(z) = exp(-z) / (1 + exp(-z))2 = σ(z) (1 - σ(z)). 
The term σ´(D(x)) is close to zero whenever x is far 
from the decision boundary. This may be considered 
a desirable property theoretically, but in our experi-
ments, only a small number of training examples were 
close enough to the decision boundary for this term 
to be numerically nonzero, leading to a non-robust 
dependence on a small number of training examples. 
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The sensitivity map of a classifier, for a given set 
of training examples, is the vector s of sensitivities 
for all voxels, computed according to Equation 2.7. 
The corresponding scaled sensitivity map is s/||s||

1
, in 

which each sensitivity has been scaled by the same 
global intensity factor ||s||

1 
= Σ

i
(s

i
) (recall that sensi-

tivities are always positive). We found that global 
normalization was important in comparing sensitivity 
maps between subjects and even between different 
splits of the data for a single subject, since otherwise 
their global intensities varied by several orders of 
magnitude. Linear discriminant (LD) and quadratic 
discriminant (QD) are defined by the decision func-
tions in Equations 2.4 and 2.3 respectively. The cor-
responding voxel sensitivities are:

	 (2.10)

and

For fMRI, both LD and QD must be applied in a PC 
subspace of small enough dimension that the covari-
ance matrices can be inverted. For every subject and 
every split of the data, we used the PC dimension 
that was found to be optimal for prediction. The 
sample covariance matrices were computed in this 
subspace. The new decision functions, expressed 
in the original voxel space, take the same form as 
above except that S-1 is replaced by US-1UT (and 
similarly for S

0
 and S

1
), where U is the orthogonal 

matrix of eigenimages obtained from the singular 
value decomposition (each column of U is an eigen-
image). Thus the voxel sensitivities are:

	 (2.11)

and

.

The mean of the corresponding scaled sensitivity 
maps (see above), across all different splits of the 

data for a given subject, is the final sensitivity map 
for that subject.

3. Results

3.1. Correlations between fMRI-based 
measures and behavioral measures
We examined correlations between the four fMRI-
based measures defined in Section 2.4, and the six 
behavioral measures of stroke recovery described in 
Section 2.1.2. Recall that for each of the behavioral 
measures, larger values correspond to better recov-
ery. For each combination of fMRI-based and behav-
ioral measures, we computed the Spearman correla-
tion coefficient. Table I reports these coefficients and 
associated p-values. Fig. 1 shows scatter plots for 
selected pairs of measures, as detailed below.
The correlations that are significant for at least one 
metric and behavioral measure at the 0.05 level 
(uncorrected) are:
1.	S phericity is negatively correlated with improve-

ment in both the peg test and pinch strength 
(there is no evidence for a significant relationship 
with hand strength performance). This indicates 
that subjects showing a highly non-spherical 
covariance matrix (i.e. with a sharp drop in the 
eigenspectrum) show the greatest improvement 
in recovery measures. A scatter plot of sphericity 
versus pinch strength improvement is shown in 
Fig. 1A.

2.	 Divergence of the eigenspectra of the “early” 
and “late” covariance matrices is positively cor-
related with pinch strength improvement. This 
is reasonable, because the difference between 
these matrices points to the re-organization of the 
brain, which leads to effective recovery. A scatter 
plot of these variables appears in Fig. 1B.

3.	 QD dimensionality is negatively correlated with 
final peg test performance. In general, we can 
say that subjects with the best final performance 
require a small number of PCs in QD classifica-
tion. To classify the bad performers, we need 
more PCs to capture the difference between the 
early and late covariance matrices. A scatter plot 
of these variables appears in Fig. 1C.

4.	 Unsupervised dimensionality is positively cor-
related with both final pinch strength and final 
grip strength. This could indicate that the overall 
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covariance matrix is more complex in good final 
performers, because their brain at the last session is 
more complex due to the post-stroke re-organiza-
tion. A scatter plot of unsupervised dimensionality 
versus final pinch strength appears in Fig. 1D.

In all of these cases, the absolute value of the cor-
relation coefficient is at least 0.67.
Note from Fig. 1 that Subject S059 does not follow 
the general trend in both the upper right and lower 
left scatter plots, corresponding to the correlations in 
points 2 and 3 above.
Subjects S066 and S090 look very similar in the 
upper left and upper right plots, with both show-
ing high pinch test improvement, low sphericity 
and high divergence of eigenspectra. In contrast on 
the same plots subjects S044 and S103 show none 
to low pinch test improvement, higher sphericity 
and approximately zero divergence of eigenspectra. 
These resuslts indicate that nonsphericity is being at 
least partly driven by changes in the eigenspectrum 
between the early and late matrices. However, a 
paired Wilcoxon test failed to reveal a significant 

change in sphericity computed separately on “early” 
and “late” sessions (p = 0.91). Unsupervised dimen-
sionality computed separately for “early” and “late” 
sessions also did not differ significantly (p = 0.86). 
This lack of significance is perhaps an indicator of 
inefficiency of the paired Wilcoxon test and/or the 
large heterogeneity in our subject set. Finally, note 
that while S066 and S090 are very similar in the 
upper left and right plots, they sharply diverge to 
either ends of the dimensionality scales in the lower 
left and lower right plots in Fig. 1.
To further analyze the correlations between fMRI-
based measures and behavioral test results, we 
performed a Partial Least Squares (PLS) analysis 
(McIntosh and Lobaugh., 2004; Krishnan et al., 
2010). The matrix of correlations R (displayed 
in Table I) was decomposed using singular-value 
decomposition: R = USVT. The first two principal 
components explain 43% and 39.5%, respectively, 
of the total correlation (this is computed by dividing 
each singular value in S by the total sum of singular 
values); taken together, they explain 82.5% of the 

Fig. 1. - Legend?
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total correlation. These two principal components 
can be seen as the two orthogonal directions that cap-
ture (in the optimal least-squares sense) the associa-
tions between fMRI-based and behavioral measures. 
Fig. 2 shows the scatter plot of the first two saliences 
that correspond to columns of U for fMRI-based 
measures, and to columns of V for behavioral mea-
sures. We can see that the first (horizontal) direction 
captures the fMRI-based measures that are com-
puted on the eigenvalues (sphericity and eigenspectra 
divergence) and the behavioral measures based on 
the improvement in performance. The second (ver-
tical) direction captures the measures based on the 
PC dimensionality that optimizes prediction (unsu-
pervised or supervised) and the behavioral measures 
based on the performance at the final session.

3.2. Sensitivity maps
For each subject, the mean scaled sensitivity maps 
for both linear discriminant and quadratic discrimi-
nant, for the “early” versus “late” task, were calcu-
lated as described in Section 2.5. Both sensitivity 
maps for Subject S090 are shown in Fig. 3. Fig. 
4 shows, for each subject, the difference between 
the LD and QD maps, with differences in sensitiv-

ity thresholded at p < 0.05 using paired t-tests with 
Bonferroni correction for multiple comparisons.
The sensitivity maps and the differences between 
them vary greatly between subjects. The most 
salient patterns of sensitivity are the following:
–	 For Subject S054, quadratic (but not linear) dis-

criminant is sensitive to a large bilateral area of 
prefrontal cortex, while linear (but not quadratic) 
discriminant is sensitive to parts of the right 
motor and premotor areas (contralateral to the 
lesion).

–	 For Subject S059, quadratic (but not linear) dis-
criminant is sensitive to part of the left premotor 
area (ipsilateral to the lesion) and the right motor 
area (contralateral to the lesion).

–	 For Subject S066, quadratic (but not linear) dis-
criminant is sensitive to several areas on both 
sides of the cerebellum.

–	 For Subject S090 (see Fig. 3), linear discriminant 
is sensitive to a large number of voxels in the 
left premotor area, which is contralateral to the 
subject’s lesion. It is interesting that quadratic 
discriminant is not sensitive to these voxels, but 
instead is sensitive to a large number of voxels in 
both sides of the cerebellum.

Fig. 2. - Legend?
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–	 For Subject S103, linear discriminant is sensitive 
to voxels in the left motor area (contralateral to 
the lesions), but quadratic discriminant is not 
sensitive to this area.

–	 For Subject S145, quadratic (but not linear) 
discriminant is sensitive to several areas of the 
frontal and parietal lobes.

Note that for the two subjects who showed greatest 
performance improvement on the pinch test, namely 
S066 and S090 (see Fig. 1), quadratic (but not lin-
ear) discriminant is sensitive to several areas on both 
sides of the cerebellum.

4. Discussion

We have presented some interesting associations 
between measures derived from fMRI data and 
results of behavioral tests of recovery. Based on 
sphericity of the data covariance matrix, subjects 
showing a highly non-spherical covariance matrix 
across the four sessions (i.e. with a sharp drop in 
the eigenspectrum) show the greatest improvement 
in recovery measures. The divergence between the 
covariance matrices reflects similar but inverse 
behavioral relationships (see Table I and Figs. 1 and 
2). Taken together these tests suggest that significant 
changes in the eigenspectra across sessions reflect 
underlying changes in the BOLD functional con-
nectivity and the re-organization of the brain, which 
leads to effective recovery. In particular the largest 
relative behavioral improvements are seen in those 
with the largest changes in their eigenspectra across 
longitudinal scanning sessions.
Our two other complexity measures (i.e., number of 
PCs that optimize QD performance, and unsuper-

vised PCA dimensionality) show strong correlations 
with behavioral tests that are measured on the last 
session (six months post-stroke). PLS analysis of the 
data in Table I shows that these measures of com-
plexity based on PC dimensionality tend to correlate 
with the behavioral measures of final recovery, and 
the measures computed on eigenspectra of the fMRI 
covariance matrix tend to correlate with behavioral 
measures of relative improvement in performance. 
These two directions of correlation are mutually 
orthogonal (Fig. 2), showing that they capture two 
relatively separate behavioral recovery processes: 
the absolute level of performance reached over 6 
months recovery, and the change from the initial 
damaged brain required to reach this final perfor-
mance. Fig. 1 shows that the subjects who have the 
best final performance (i.e., recovery) on two out of 
three behavioral tests require the smallest number of 
PCs to optimize QD classification, but the largest 
number of PCs to minimize the unsupervised gener-
alization error.
One possible explanation for these results is con-
sistent with our original motivating hypothesis. 
Subjects who come closest to recovering normal 
motor behavior come closest to reinstating the 
relationship between complexity, or unsupervised 
dimensionality, and behavior proposed by McIntosh 
et al. (2008, 2010), i.e., the better the behavior the 
larger the supporting brain complexity and associ-
ated dimensionality. This relationship is reflected 
in Fig. 1D, the positive correlation between final 
grip strength and unsupervised dimensionality in 
Table I, and the second principal component of Fig. 
2. Subjects may show a relatively large behavioral 
improvement (upper plots, particularly S066 and 
S090), but may (S066) or may not (S090) come 

Fig. 3. - Legend?
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close to recovering normal function in 6 months. 
This large relative improvement while failing to 
recover near normal function (S090) is associated 
with intermediate to low brain complexity possibly 
reflecting the damaged and still somewhat discon-
nected nature of their motor networks (James et 
al., 2009). Curiously QD dimensionality (Fig. 1C) 
reflects an opposite association between dimension-
ality for maximum prediction and final behavior, 
which is highest for the poorest final behavioral per-
formance. This may reflect yet a third influence on 
our results related to recent work on subspace phase 
transitions required to support optimal discrimina-

tion on a PCA basis set (Yourganov et al., 2010; 
Strother et al., 2010); the weaker and less coherent 
the signal the larger the dimensionality required to 
maximize discriminant performance.
The measures discussed so far give overall indica-
tions of complexity of functional connectivity or, 
in the case of the divergence of eigenspectra mea-
sure, a partial indication of the degree of change in 
functional connectivity during the course of stroke 
recovery. Sensitivity maps indicate that at least some 
of the brain regions are involved in changes in func-
tional connectivity over time. If a voxel has a high 
sensitivity for QD but not for LD, for “early” versus 

Fig. 4. - Legend?
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“late” discrimination, this implies that functional 
connectivity involving that voxel has changed over 
time. We observed clusters of such voxels in vari-
ous areas, but especially in the cerebellum, motor 
and premotor areas and in prefrontal cortex. Of par-
ticular interest is the fact that, for the two subjects 
who showed greatest performance improvement on 
the pinch test, namely S066 and S090 (see Fig. 1A), 
quadratic (but not linear) discriminant is sensitive to 
several areas on both sides the cerebellum despite 
the very different PCA subspaces required to sup-
port the near perfect prediction performance, i.e., 
20 versus 190 PCs, respectively (see Fig. 1C). This 
suggests that changes in functional connectivity 
involving the cerebellum play an important role in 
stroke recovery.
Given the limited number and heterogeneity of sub-
jects and old 1.5T BOLD fMRI scans available for 
this study we are encouraged by the relatively strong 
associations found between functional connectivity 
metrics and measures of behavioral recovery. We 
believe they strongly support use of such metrics to 
study recovery in longitudinal stroke studies with 
state-of-the-art BOLD fMRI acquisition at 3.0T. In 
addition, such studies help to shed light on optimal 
performance conditions for predictive classifiers and 
clearly show the importance of model regularization 
(i.e., dimensionality selection) and potential difficul-
ties in generalizing such results beyond the current 
data set, and even across individual subjects when 
studying brain recovery.
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