
In thinking about brain network function and how it 
enables mental function, there are several obvious 
things to consider. First is the structural connectivity 
of the system. The brain’s wiring pattern is consistent 
with a small-world network with dense local connec-
tions and more spare distal connections (Bullmore 
and Sporns, 2009). Other features that have emerged 
include the presence of certain regions that act as 
hubs, connecting different local territories of special-
ized processing (Hagmann et al., 2008; Honey and 
Sporns, 2008). On top of the anatomical architecture, 
one would need to consider which brain areas are 
active at a particular time and how the sequence 
of activations proceeds for a given operation. After 

considering activation, comes co-activation, wherein 
anatomical connectivity enables activity changes in 
one node to influence, and be influenced by, other 
nodes (Horwitz and McIntosh, 1993; McIntosh, 
2000; McIntosh and Korostil, 2008).
Another feature that seems less obvious in this con-
sideration is “noise” that exists in these networks 
(Faisal et al., 2008). At one level, noise reflects 
the imprecision of the cellular operations within an 
ensemble (e.g., ion channel opening and closing, 
membrane fluctuations). At a second level, involv-
ing connections between ensembles, variations in 
transmission timing exist, which can affect the syn-
chrony between ensembles.
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Early in life, brain development carries with it a large number of structural changes that impact the functional 
interactions of distributed neuronal networks. Such changes enhance information processing capacity, moving the 
brain from a deterministic system to one that is more stochastic. The evidence from empirical studies with EEG and 
functional MRI suggests that this stochastic property is a result of an increased number of possible functional net-
work configurations for a given situation. This is captured in the variability of endogenous and evoked responses 
or “brain noise”. In empirical data from infants and children, brain noise increases with maturation and corre-
lates positively with stable behavior and accuracy. The noise increase is best explained through increased noise 
from network level interactions with a concomitant decrease of local noise. In old adults, brain noise continues to 
change, although the pattern of changes is not as global as in early development. The relation between high brain 
noise and stable behavior is maintained, but the relationships differ by region, suggesting changes in local dynam-
ics that then impact on potential network configurations. These data, when considered in concert with our extant 
modeling work, suggest that maturational changes in brain noise represent the enhancement of functional network 
potential – the brain’s dynamic repertoire.
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2	 A.R. Mcintosh et al.

There is yet another level of noise that needs to be 
considered here. Linear systems are limited in their 
dynamics to the expression of exactly one behavior 
only, which is obscured in the presence of noise. 
Nonlinear dynamic systems, of which the brain is 
a prime example, have the ability to express multi-
stability and hence multiple behaviors (Kelso 1995; 
Haken, 1996). In such systems noise contributes 
directly to the spatiotemporal pattern formation of 
network configurations. The computational aspects 
of this are discussed in some detail in the accom-
panying paper in this issue (Jirsa et al., this issue). 
In general terms, the brain usually operates at the 
“edge of criticality” between any number of pos-
sible states, or functional network configurations. In 
the absence of noise, there is little capacity for the 
system to explore these states, and a potential for 
the system to settle into a single state. With noise, 
the system approaches one state and then, with 
noise fluctuations, may move towards another state. 
Hence the mutual presence of nonlinearity and noise 
is an absolute necessity for an exploratory dynamics 
to occur spontaneously in the absence of external 
stimulation. Around a stable anatomical skeleton, 
a number of potential functional configurations 
may be possible and the presence of noise allows 
access to these configurations. The combination of 
noise and potential network configurations results 
in variation in how the system will reconfigure in 
response to an external stimulus. It is in this sense 
we wish to understand “brain noise” in the current 
context: brain noise is an expression of the degree of 
variation found in brain signals, which are generated 
by the deterministic and random components of the 
brain network processes.
If these theoretical statements have validity, one 
would expect brain noise to change as the brain 
matures and ages. Maturation brings the refine-
ment of anatomical connectivity through changes in 
myelination and local pruning of connections, and 
with experience, further development of potential 
functional networks (Fuchs et al., 2007). If noise 
is beneficial for normal function of brain networks, 
then there should be a positive correlation between 
amount of noise present in a network and cogni-
tive performance. In the sections that follow, we 
review empirical evidence that provide support for 
this theory from three studies: two EEG studies of 
infants and children, and one functional MRI study 

of young and old adults. We hypothesized that early 
maturation may lead to an increase in brain noise. 
While most would expect that old age would bring 
even more noise to the system, with the biophysical 
changes such as white matter loss, we speculated 
that advanced aging would result in a reduction of 
brain noise.

How do we assess “brain noise”?

The simplest method to assess noise is to look at the 
variance of the signal. For our fMRI study, this was 
done by calculating the standard deviation of the sig-
nal fluctuation across the time series for each brain 
region/voxel (Garrett et al., 2010). With the appro-
priate preprocessing steps to eliminate measurement 
artifact, one would assume that a physiologically 
noisier signal would have a higher standard devia-
tion.
A more comprehensive method for assessing noise 
based on variance is to apply a principal compo-
nents analysis (PCA) to single trials of a system’s 
response to a stimulus. Since PCA is sensitive to 
the variance of a data set, one would assume that 
noisy systems should have higher variance and 
thus would require more principal components, or 
dimensions, to summarize the variance structure. A 
simple assessment of noise would be to compare the 
number of components needed to capture the same 
proportion of variance between different scenarios 
(e.g., people, tasks, etc.).
The final measure looks at temporal predictability in 
a time series. This measure is known as multiscale 
entropy (MSE, Costa et al., 2002b; Costa et al., 
2005). Here the approach involves computing sam-
ple entropy of a time series, and then successively 
down-sampling the time series and plotting entropy 
as a function of temporal scale. MSE assigns low 
values to both highly deterministic and completely 
random signals, making it an explicit measure of 
signal complexity (Costa et al., 2002a). The method 
is related to spectral power analyses, but is sensitive 
to the temporal dependencies within a signal unlike 
spectral power distribution (McIntosh et al., 2008). 
The benefit of MSE measures is that it takes advan-
tage of the potential that predictability depends on 
the temporal scale. However, the measure requires 
a long time series of ~500 data points to adequately 
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	brai n noise in development and aging	 3

capture this scale dependency. As such, we have 
not been able to apply it consistently across all our 
studies, particular fMRI data where the time series 
length are usually shorter relative to EEG.
An important clarification here is that while these 
three measures are sensitive to different aspects of 
the brain signal, at present we take the liberty of 
considering them all as measures of brain noise. We 
acknowledge that this is not ideal, as noise has dif-
ferent implications at different levels of the system. 
However, further differentiation is not needed for 
the purposes of the points in this paper, but we shall 
revisit this issue in the discussion.

Face processing in children

The first study examined the relationship between 
maturation and brain noise in children (8-15 years) 
and young adults (20-33 years) (McIntosh et al., 
2008). The data came from an ERP examination of 
responses to faces. Participants were shown a single 
image of a face, either normal view, contrast reversed 
or rotated 180o. Each trial started with a presentation 
of a novel or familiar face, and subjects responded 
by pressing either a target or a nontarget button 
depending on whether they recognized the face. For 
each subject we calculated two response time related 
measures: mean response time (mean RT) and coef-
ficient of variation of the response time (cvRT). 
The coefficient of variation of RT was calculated 
as the standard deviation divided by the mean RT 
within subject, and was taken as a measure of sub-
ject’s behavioral variability. The scaling procedure 
in cvRT minimizes differences between groups that 
arise from differences in mean and standard devia-
tions. As a third behavioral measure, we used subject 
accuracy (percent correct responses), calculated from 
all recorded trials. The results from these measures 
are depicted in Fig. 1a. Behaviorally, all age groups 
showed high accuracy in the task, with adults near 
ceiling. Recognition accuracy for children, while 
lower than for adults, was well above chance. Mean 
RT was much slower for children 8-11 years and sim-
ilar for children 12-15 years and adults. Importantly, 
cvRT showed a gradual age-related decrease.
The average evoked response to a single face 
showed the highest amplitude in the youngest chil-
dren, and progressively decreased with age Fig. 

1b. In addition, the latency of the initial response 
decreased with age. These two features, the change 
in amplitude and latency, have been well-charac-
terized in the literature (Itier and Taylor, 2004). 
The bias in children towards higher amplitude, but 
slower, electrophysiological signals is paralleled by 
a differential distribution in prestimulus, or baseline, 
spectral power (Fig. 1c). Across age, there was a 
gradual reduction in low frequency spectral power 
and a relative increase in power at higher frequen-
cies. The relative change in spectral power density 
presumably underlies the reduction in the latency 
of the evoked responses and its multicomponent 
nature, where the lower frequency bias in children 
would yield slow and broad evoked potentials. The 
emergence of higher frequencies with maturation 
would both decrease the evoked response latency 
and allow additional deflections to emerge (i.e., 
N100, P200, etc.).
As shown in Fig. 2a, PCA dimensionality estima-
tion pre-stimulus and post-stimulus was highest 
for adults across the entire scalp. Interestingly, a 
comparison of pre- vs. post-stimulus PCA suggests 
some dimensionality reduction coming from the 
processing of the stimulus, which is evidenced by 
a reduction in PCA dimensionality post-stimulus. 
This is consistent with recent work suggests that 
stimulus onset can reduce the variability of neuro-
nal responses throughout the cortex, but that ample 
variability remains (Churchland et al.). In the pres-
ent case, the magnitude of dimensionality gradually 
decreased as a function of age. This difference sug-
gests that, with maturation, noise in the brain signals 
increased while the degree to which this variability 
was affected by incoming stimuli decreased.
MSE estimation applied to single trial data for 
each channel showed that sample entropy measures 
increased with age, with the intermediate age groups 
falling along an ordinal trend (Fig. 2b). While the 
changes occurred across most temporal scales the 
effect was strongest in the middle range of the tem-
poral scales from ~5-9.
The final and most important part of this investiga-
tion was to relate behavioral variability and brain 
variability during maturation. We addressed these 
issues by analyzing the correlations between our 
measures of dynamical variability (pre and post-
PCA dimensionality and MSE) and overt behavior 
(RT-variability, accuracy and age). We also includ-
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4	 A.R. Mcintosh et al.

ed mean RT in the analysis to determine whether 
the correlation patterns we observed were specific to 
behavioral measures of variability, or to any metric.
Fig. 3 shows the results of the analysis. Computed 
across all subjects, the correlation between behavioral 
variability (cvRT), and brain variability (PCA dimen-
sionality and MSE) was negative and highly robust 
across most of the EEG channels (Fig. 3a). The corre-
lation for accuracy was a mirror image of the pattern 
for cvRT, showing a positive correlation with PCA 
and MSE estimates (Fig. 3b). Mean RT, however, 

showed a much weaker, and statistically unreliable, 
correlation pattern with brain variability measures 
(Fig. 3c). Finally, the correlation of chronological 
age and brain variability was very strong and positive 
across most of the scalp. Measures of behavioral con-
sistency (cvRT and accuracy), and chronological age 
showed stable correlations with brain variability mea-
sured with PCA and MSE. Mean RT, however, did 
not. In other words, increased brain variability during 
maturation was associated with more stable and accu-
rate behavior, but not necessarily faster responding.

Fig. 1. - Behavior and EEG data by age (A) Behavioral results for mean RT, coefficient of variation (cvRT) and accu-
racy (percent correct responses). Error bars indicate group standard errors. B) Waveforms for group average ERPs 
across all electrodes, together with corresponding P100 latencies (marked by vertical dashed line) and P100 scalp 
maps. C) Group average results for spectral power distribution (SPD) during baseline interval for electrode O2. Error 
bars indicate group standard errors. Similar pattern was present at all channels. With maturation, decreases were 
observed in lower frequencies (< 10 Hz) combined with increase in higher frequencies (> 10 Hz).
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In the sample we studied, a maturational increase 
in brain noise covaried with an increase in behav-
ioral stability. Subjects with higher signal vari-
ability showed less variability in response latency 
(measured with cvRT) and greater performance 
accuracy. Interestingly, when the measures were 
adjusted for the chronological age, the relationship 
between brain and behavioral variability weakened, 
but was not abolished, suggesting that only part of 
this relationship represented a maturational effect. It 
is worth reiterating that mean reaction time, which 
also showed a maturational change, did not signifi-
cantly correlate with brain variability. It may be that 
other physiological factors are more important for 
response speed changes during maturation. By con-
trast, strong correlations with behavioral consistency 
indicate that cvRT and accuracy are likely tapping 
into aspects of behavioral tuning, which are more 
tightly related to the changes in brain variability.
These initial data confirm that brain variability 
increases and behavioral variability decreases with 
maturation. With maturation comes specialization 
of brain regions, but with concurrent increased inte-
gration between distributed neuronal populations 

and establishment of new functional connections 
(Johnson. 2001). The change in balance between 
segregation and integration would produce more 
variability in on-going activity, given that the num-
ber of simultaneous processes possible at any given 
moment increases. Mature and integrated nervous 
systems generally have more prolonged and com-
plicated neural transients (Friston, 1997). Such tran-
sients are characteristic of a system with high neural 
complexity (Tononi et al., 1994).

Brain noise in infants

We continued to explore the relationship between 
brain variability in maturation by looking at infants 
and children in an ERP study examining the response 
to visual and auditory stimuli (Lippe et al., 2009). In 
the study, 35 children (27 days to 5 years) and 10 
adults (age range 20-30 yrs) had ERPs measured 
during passive auditory and visual stimuli. The audi-
tory stimuli were broadband white noise samples, 
and visual stimuli were reversing checkerboard 
patterns. Two questions were addressed: 1) whether 

Fig. 2. - Within-subject brain variability measures across age groups. A) shows group mean results across the scalp 
for pre- and post-stimulus PCA dimensionality estimate of trial-to-trial variability (top two rows) and MSE area under 
the curve (bottom row). Scalp maps of group means were obtained by interpolating values from single channel 
group mean values. Gradual increase in all three brain variability measures across age groups is evident. B) shows 
group means for MSE estimates across temporal scales for channel O2, together with corresponding standard 
errors. Similar entropy curves were obtained for all channels and showed maturation-related increase in entropy at 
all scales. Given consistent age-related differences at all time scales, the area under the MSE curve was taken as 
a summary measure of maturational changes in entropy (e.g., (A), bottom row).
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6	 A.R. Mcintosh et al.

the same maturational trend observed in the first 
study was present in infants; 2) whether there was 
a differential maturational change in variability of 
responses in the auditory vs. visual modality.
The ERPs show the expected developmental chang-
es in morphology, amplitude, and latency previously 
reported (Fig. 4, Lippe et al., 2007; Lippe et al., 
2009). From a large positive wave, the morphology 
of the ERPs evolves beyond 5 years of age in both 
modalities. Topographical maps at peak latencies 

show the expected location of brain activity. The 
latency of the within group average visual evoked 
potential decreased by 52 ms. Similarly, the latency 
of the group average auditory evoked potential 
(AEP) decreased by 56 ms. The dominant AEP posi-
tive component amplitude also decreased from 2 to 
5 years to adulthood.
For this study, only MSE was used to assess brain 
noise. The MSE curves produced within each age 
group are shown in Fig. 5. The MSE curve is shorter 

Fig. 3. - Within-subject brain variability in relation to behavior and chronological age. A) Correlations are arranged 
in a table where rows represent three within-subject brain variability measures (pre- and post- stimulus PCA and 
MSE) and columns represent behavioral measures (cvRT, accuracy and meanRT) and age. Each entry in the 
table shows a scalp map resulting from interpolated values from single channel correlations between given brain 
variability measure and given behavior or age. Unstable correlations (where the 95% CI included 0) were set to 0. 
Colormap corresponds to [-0.7 0.7] range of correlation values. Along with each scalp map of correlations, there 
is an inset showing a scatter plot representing subject measures for a single channel (electrode O2). Subjects are 
grouped by color according to age group membership. Estimated value of correlation (r) along with the associ-
ated 95% CI is given on top. B) Results of a multivariate statistical analysis of the observed correlations(McIntosh 
and Lobaugh, 2004). The bar graph plots the global correlation of brain variability and each behavior measure 
or age (± bootstrap estimated standard error). As can be seen, for all three brain measures there was a similar 
global patterns of simultaneous negative correlation with cvRT, positive correlation with accuracy and age, and 
no stable correlation with mean RT.

tanya
Inserted Text
-

tanya
Inserted Text
insert space



	brai n noise in development and aging	 7

than the one derived from the previous work (Fig. 
2b) because of a smaller ERP event duration. As 
expected, the MSE curves showed the greatest 
entropy for adults and the least for the youngest 
infants. Results confirmed a linear increase of MSE 
with age, regardless of the condition and of the 
temporal scale. The trend depicted in Fig. 2 was 
also present when age was treated as a continuous 
measure, and if the adult group is excluded from 
the analysis (correlations of age and MSE visual: r 
= 0.55, ±0.1, 95% confidence interval; auditory, r = 
0.60, ±0.07 95% confidence interval).
We also tested whether MSE of auditory versus 

visual responses varied by age group (Fig. 6). The 
overall test of the interaction of MSE across groups 
showed significant differences between the visual 
and the auditory conditions by age. In fact, MSE was 
significantly higher in the visual condition across 
all temporal scales compared to the auditory condi-
tion between 2-66 months. The differences between 
conditions were greatest at 2-8 months, the critical 
period for visual system development. In contrast, 
MSE of auditory and visual responses could not be 
distinguished in adulthood. These results suggest 
that brain noise increases with age, but may increase 
differentially by sensory domain.

Fig. 4. - Visual and auditory evoked potentials. (A, B) Group average of the visual evoked potentials. (A) 
Topographies at the latency of the highest amplitude peak for each group. (B) Group average waveforms at elec-
trode Oz. (C, D) Group average of the auditory evoked potentials. (C) Topographies at the latency of the highest 
amplitude peak for each group. (D) Group average waveforms at electrode FCz.
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Taken together, these two studies present the follow-
ing conclusions. First, behavioral stability increases 
with maturation. This result comes as no surprise. 
Secondly, neurophysiological variability (measured 
with EEG) also increases during maturation. Finally, 
consistent with the hypothesis that if noise is ben-
eficial that it should correlate with behavior, we 
observed strong correlation between brain noise and 
measures of behavior stability (cvRT and accuracy).
The global increase in brain noise early in develop-
ment may be related to structural modifications, 
which change the deterministic or random compo-
nents of the network resulting in greater variation 
of the brain signals. At the regional level, it may 
correspond to the increased arborization of den-
dritic trees (Moore, 2002), and axons (Burkhalter, 
1993), enhanced connections of interneurones (Ali 
et al., 2007), expression of receptors (Huang and 
Scheiffele, 2008) and synaptic stabilization (Hua 

and Smith, 2004). The changes in cell firing charac-
teristics and synaptic potential durations may result 
in enhanced oscillatory capacities in the higher 
frequency range. At a network level, the increased 
noise may correspond to myelin development (Paus 
et al., 1999), brain region segregation (Gogtay et al., 
2004), and network formation, all of which enhance 
binding and integration capacities (Yu et al., 2008).

Adult age-related changes in BOLD-
fMRI variability

The ERP studies of children indicated that brain 
noise increases with maturation. Following from our 
original hypothesis, the next question was whether 
brain noise also continued to change in older age. 
We examined the variability in the fMRI signal 
(Garrett et al., 2010). We studied 19 young individu-

Fig. 5. - Age-related differences in multiscale entropy estimated separately in VIS and AUD conditions. Left pan-
els show group mean entropy with error bars representing group standard errors. Right panels show statistical 
contrasts representing age-related increase in entropy. Contrasts for both conditions were significant and stably 
expressed across all temporal scales.



	brai n noise in development and aging	 9

als (20-30 years) and 28 older adults (56-84 years). 
The data of interest were extracted from blocks of 
time where subjects fixated on a cross presented via 
an LCD projector in the MR scanner. In addition to 
the standard fMRI processing steps, we performed 
several additional preprocessing steps aimed at 
reducing data artifacts. Functional volumes were 
first corrected for artifacts via independent compo-
nent analysis (ICA) within separate runs, as imple-
mented in FSL/Melodic (Beckmann and Smith, 
2004). Voxel time series were further adjusted by 
regressing out motion correction parameters, and 
white matter (WM) and CSF time series.
To calculate BOLD standard deviations (SDs) dur-
ing fixation, we performed an additional block 
normalization procedure, due to the fact that large 
block offsets often are present from residual low-
frequency artifacts. To correct mean signal offsets 
between blocks, the fMRI signal was normalized 
across all fixation blocks such that the overall 
four-dimensional mean across brain and block was 

100. For each voxel, we then subtracted the block 
mean and concatenated across all blocks. Finally, 
we calculated voxel SDs across this concatenated 
mean-block corrected time series. To calculate mean 
signal during fixation at each voxel (to which we 
compared brain variability), we first expressed each 
signal value as a percentage change from its respec-
tive block’s onset value, and then calculated a mean 
percentage change within each block and averaged 
across all blocks
The first analysis looked at the relationship between 
age and signal variability, showing a very strong 
correlation with age. Anterior temporal and cerebel-
lar regions showed higher SD with age, whereas 
medial prefrontal cortex, precuneus, and bilateral 
inferior frontal regions showed reduced SD with 
age. A similar analysis was performed on the signal 
mean. The regional distribution of these correlations 
was primarily in ventral/dorsal posterior cortices 
and left middle frontal regions, and showed reduced 
mean BOLD activity with age. However, this cor-

Fig. 6. - Multi scale entropy in VIS vs. AUD conditions across five age groups. Group mean entropy is shown for VIS 
and AUD conditions, together with group standard errors. The outcomes of the significance testing for differences 
in MSE between two conditions within each group are given as p values. The adult group showed no significant 
differences between the two conditions. Bottom right panel shows the statistical contrast between VIS and AUD 
conditions across all five groups simultaneously, after correcting for overall group differences. The contrast was 
significant and stably expressed across all four temporal scales. VIS condition exhibits higher MSE compared to 
AUD condition across all groups and the difference is most strongly expressed in the second group (2-8 months) 
in relation to other groups.
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10	 A.R. Mcintosh et al.

relation was weaker; compared to mean signal, SD 
provided more than five times the age-predictive 
utility. In addition, the spatial distribution of these 
SD differences across the brain was strikingly differ-
ent from that of the mean signal (Fig. 7).
We also assessed how the SD of the BOLD sig-
nal was related to RT variability on perceptual 

and attentional tasks in younger and older adults. 
Variability in some of the areas with reduced SD 
in the older adults (Fig. 8), such as medial frontal 
cortex, precuneus and inferior frontal gyri, was 
associated with more variable RTs (the multivariate 
correlations between brain variability and RT vari-
ability ranged from 0.6 to 0.7 for all tasks, with a 

Fig. 7. - Multivariate statistical brain patterns overlay on a canonical structural MRI. a, Yellow/red regions indicate 
robust age-related increases, and blue regions indicate age-related decreases, in BOLD fMRI intra-individual stand-
ard deviation (SD). b, Yellow/red regions indicate robust age-related increases, and blue regions indicate age-
related decreases, in BOLD means. In both a and b, all robust areas were statistically reliable with a 99% confidence 
interval. c, Overlay plot highlighting differences between age-based SD- and mean-brain spatial patterns. Red, 
Mean increase, no SD effect; blue, mean decrease, no SD effect; green, SD increase, no mean effect; yellow, SD 
decrease, no mean effect. d, Overlay plot highlighting similarities between age-based SD- and mean-brain spatial 
patterns. Blue, mean and SD both decrease with age; green, mean decrease, SD increase. All images represent 
every other slice in z-direction.
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stable 95% confidence interval, unpublished data). 
For young subjects, high variability in these regions 
was associated with more stable RTs. However, 
older adults had less variability in these areas and 
had more variable RTs, suggesting that regionally-
specific reductions in brain noise may underlie the 
age differences behavior stability often reported in 
the cognitive aging literature.
These results partly confirm the second hypothesis 
we put forth, namely that normal aging results in 
a decrease in brain noise. Although we observed 
both increases and decreases in the fMRI data, the 
decreases were more extensive. When considered 
relative to the early developmental increase in brain 
noise, it makes sense that the degree of change may 
not be as global in later life. Early life experience, 
layered atop programmed structural changes (e.g., 

myelination), would result in wide-spread changes 
in functional networks. Even in the presence of 
white matter degradation and cortical shrinkage 
(Guttmann et al., 1998; Resnick et al., 2003; Jones 
et al., 2006; Raz and Rodrigue, 2006), structural 
changes are far less profound in older adulthood 
and experiential modifications more subtle; thus, 
the modifications of functional networks are likely 
more subtle.

Discussion

Collectively, the three empirical studies reviewed 
here demonstrate that brain noise changes with 
maturation and aging, and suggests that this change 
correlates with stable behavior. The present results 

Fig. 8. - Statistical map from a multivariate analysis relating coefficient of variation in reaction time (cvRT) to the 
intra-individual standard deviation (SD) of the BOLD fMRI time series. Colored areas indicate regions where the 
relationship was statistically reliable. Regions colored yellow showed a negative correlation between BOLD SD and 
cvRT (i.e., higher BOLD SD, more stable reaction time), while blue area showed a positive correlation.
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12	 A.R. Mcintosh et al.

may seem at odds with the intuitive notion of 
behavior and brain variability, where one would 
expect that they go hand in hand. However, the 
results do make sense when the nonlinear dynam-
ics of the nervous system are considered. Internal 
variability may be vital to enable the brain to parse 
weak and ambiguous incoming signals (Douglass et 
al., 1993; Traynelis and Jaramillo, 1998; Destexhe 
and Contreras, 2006). Variability can facilitate the 
exchange of signals between neurons (Stacey and 
Durand, 2000), transitions in metastable systems 
(McNamara and Wiesenfeld, 1989), and the forma-
tion of functional networks (Fuchs et al., 2007). As 
the nervous system matures, physiological vari-
ability increases, and the system can better adapt 
to its environment (Seth, 1998). In addition, as the 
system learns, inherent variability increases with the 
formation of new functional networks. Considered 
this way, noise enables the exploration of, and is a 
reflection of, the brain’s dynamic repertoire.
Fig. 9 provides a useful illustration of the effect of 
noise in the exploration of the dynamic repertoire. 
On the left, we show how the trajectories of three 
nodes in a system approach the stable equilibrium 
in absence of noise by spiraling towards the fixed 
point. The corresponding time series display a 

damped oscillation. On the right, the same dynamic 
system is computationally solved in the presence 
of noise. Driven by the noise, the system explores 
the neighborhood of the equilibrium point, here 
the manifold. Each excursion further away from 
the equilibrium is followed by an oscillatory return 
along the manifold giving rise to the intermittent fast 
neurophysiological oscillations. One could imagine 
that, as the system matures and alternative func-
tional configurations become possible, the shape of 
the manifold is altered. Thus for a given point within 
the manifold, nonsingular trajectories become pos-
sible. The figure conveys the behavior of a simple 
three node network, but as the complexity of the 
network increases through additional nodes and 
functional networks, one can envision a more com-
plicated manifold with multiple co-existing régimes 
of attracting and repelling subregions, each of which 
displays different dynamic (oscillatory, transient, 
chaotic, etc.) behaviors.
Brain networks generally possess small-world con-
struction, wherein there are multiple routes for 
different network elements to interact (Sporns and 
Zwi, 2004). In the presence of noise, the system will 
visit these network configurations spontaneously. 
In this case, the noise provides the kinetic energy 

Fig. 9. - The dynamics of a simple three-node network to illustrate the exploration of dynamic range in the absence 
(left) or presence (right) of noise. The top figures showed the simulated time series for the three nodes and, below, 
the corresponding the phase plots. See text for further description.
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for the network to explore possible functional 
architectures, which gives rise to variability in the 
measured network dynamics. It seems reasonable to 
link this behavior to the notion from Bayes models 
of the brain (Pouget et al., 2003; Knill and Pouget, 
2004). By being in a constant state of exploration, 
the brain can generate predictions about the likely 
network configuration that would be optimal for a 
given input. The variation of predictions is driven 
both by noise at the local level and by the range of 
functional network configurations available. The 
supposition is that being in the state of exploration 
allows the brain to deal with the ambiguity in the 
environment by converging on a space of potential 
functional configurations for a given situation. As 
the system converges to a response, the noise also 
acts to allow rapid switching of configurations once 
the response is generated or if the situation changes 
during the response execution (e.g., a draft of wind 
during swinging a golf club) (Milton and Mackey, 
2000). Thus, optimal noise in brain networks seems 
to allow for more stability of the overt behavioral 
response (Manoel and Connolly, 1995).
Our modeling work presented in this issue (Jirsa et 
al.) demonstrates the importance of noise in pro-
ducing the spatiotemporal dynamics that underlie 
resting-state in the primate brain. A key observation 
is that the emergence of these dynamics is critically 
dependent on anatomical connectivity and local 
noise. In early development, it stands to reason that 
both factors are changing, explaining the global 
changes in measured brain signal variability. With 
normal aging, noise changes are nonuniform and 
seem to show some regional and temporal specific-
ity. At the regional level, some areas increase in 
variability and others decrease. The significance of 
this requires more detailed investigation, but it is 
possible that normal aging may bring a reduction in 
the variability coming exploration of functional net-
work configuration, but also increase the variability 
of local networks.
Given that brain noise seems to evolve during matu-
ration to some optimum level, one may postulate that 
further increases or decreases, coming from disease 
or damage would compromise behavioral stability. In 
other words, noise may show changes in some patho-
logical conditions. In disorders such as schizophrenia 
there appears to be too much noise, making it difficult 
for networks to efficiently integrate external pertur-

bations into on-going network exploration (Winterer 
et al., 2000). On the other hand, a recent report 
on pediatric traumatic brain injury (TBI) observed 
that the temporal variability of phase synchroniza-
tion among EEG electrodes increased as patients 
recovered and emerged from coma (Nenadovic et 
al., 2008). The authors also found that temporal 
variability correlated with outcomes better than 
conventional clinical indices. Some of our recent 
work noted a similar trend in adult TBI, wherein 
those that exhibited better behavioral recovery on an 
attention task showed greater brain noise (Raja et al. 
2007). While this certainly is not meant to suggest 
that clinical conditions can be entirely explained 
through changes in brain noise, it does suggest that 
brain dysfunctions produce noise patterns that can be 
differentiated from the normal range. In general, the 
noise estimation methods we use are easily applied 
to clinically-relevant neuroimaging tools (e.g., EEG 
and fMRI), and thus could increase the sensitivity for 
detection of brain network changes. Moreover, under 
the assumption that optimal noise is a signature of 
optimal brain function, monitoring brain noise may 
be a sensitive marker of recovery of function and 
potentially of clinical outcome.
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