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D
uring the past decade, many papers have been pub-
lished that describe image processing of functional
magnetic resonance image (fMRI) time series. These
papers mainly focus on processing real-valued, mag-

nitude images that are reconstructed from k-space data (i.e.,
fourier space), before application of a statistical analysis
approach to detect brain activations. These processes have
come to be known collectively as preprocessing operations
(Figure 1). The sequential combination of spatio-temporal
image processing steps following data acquisition and includ-
ing data analysis is referred to as the fMRI data-processing
pipeline [1]. There has also been a recent focus on using com-
plex-valued fMRI time series to improve activation detection
[2]–[4] and remove vascular artifacts [5]. Most of the prepro-
cessing issues associated with the use of complex-
valued data have yet to be studied, and this approach is not
discussed in the following. In addition to fMRI images, struc-
tural magnetic resonance images (MRIs) are passed to the pre-
processing pipeline. These provide an anatomical reference for
the statistical parametric images (SPIs) output from the data
analysis stage (Figure 1) and allow multiple subjects to be reg-
istered within a common coordinate system. The existence of
a distinct set of preprocessing steps has recently been codified
in a separate chapter of the excellent introductory book on fMRI
by Huettel et. al. [6]. Previous books covering fMRI and its
applications include chapters that cover many of the prepro-
cessing steps described in the following [7], [8].

In this article, I review the evaluation and optimization of
the preprocessing steps for blood-oxygenation-level-depen-
dent (BOLD) fMRI. This technique indirectly measures
changes in local neuronal firing rates by measuring associated
changes in deoxy-hemoglobin concentrations in nearby blood
vessels. I will not directly address preprocessing operations for
other MRI techniques (such as arterial spin labeling for mea-
suring blood flow in the brain), structural MRI techniques
(such as diffusion tensor imaging for measuring white matter
tracts), or voxel-based morphometry for general analysis of
structural MRI images.

By virtue of their central position in the processing pipeline,
the preprocessing steps interact with virtually every decision
made in designing and performing an fMRI experiment
(Figure 1). For example, at the start of the pipeline, the theo-

ries of brain function and disease that are to be tested will
determine the experimental design variables, which will in
turn guide the choice of scanner pulse sequences, within the
physical constraints of the scanner. This has led to several
classes of fMRI experiments that are defined relative to the
time during which the BOLD fMRI signal evolves, i.e., the
hemodynamic response function (HRF). Following a single
brief stimulus, the HRF lasts approximately 10–15 s. Block
designs continuously present a stimulus for a single experi-
mental condition over an extended period of time relative to
the HRF (typically 20–30 s). Event-related designs present
discrete, stimulus events with durations and interstimulus
intervals that are typically short compared to the HRF and
may be randomized; mixed designs contain features of both
block and event-related designs. Many of these experimental
design choices interact with, and therefore should influence,
the choice of preprocessing steps and parameters. 

In addition, there are two distinctly different standard pulse
sequences for acquiring each slice of k-space data, echo planar
imaging (EPI) that fills k-space on a rectangular grid, and spi-
ral imaging (SI) that fills k-space along a corkscrew trajectory.
These sequences produce somewhat different imaging artifacts
and signal-to-noise properties, but differences in their interac-
tions with preprocessing parameter choices have not been sys-
tematically studied. At the other end of the processing
pipeline, the choice of data analysis approach may strongly
interact with the preprocessing parameter choices, and these
interactions are gradually being studied [1], [9]–[11]. 

The magnetic field strength also plays an important role in
processing pipeline decisions. Many groups are upgrading
from 1.5 T to 3.0 T, and even 7.0 T fields or higher for
research scanners. It is well established that 3.0 T fields have a
significantly higher contrast-to-noise for the BOLD effect than
1.5 T fields in homogeneous brain tissue [12]. However, this
advantage is somewhat reduced by a higher physiological
noise fraction, greater artifacts at air-tissue boundaries, and
reduced decay times [13], i.e., preprocessing becomes more
important with increasing field strength.

Because of these and many other interactions, the steps
in the preprocessing pipeline should not be studied in isola-
tion. Moreover, much of the preprocessing research out-
lined in the following has focused on developments driven
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by technological and methodological concerns (Figure 1)
in which new approaches have been introduced for one or
two of the preprocessing pipeline steps. These reports are
typically accompanied by limited test data that demon-
strate that the new approach is better than one or more of
the existing approaches for a particular step. The reports
often ignore possible interactions with other preprocess-
ing pipeline steps or the task for which the pipeline was
assembled in the first  place.  Such methodological
approaches are important to understand the properties of
algorithms and software for individual steps but do not
guarantee the improvement of the generalizable and
reproducible models of brain function and disease
required at the output of the fMRI pipeline (Figure 1).

In all but a small number of large research centers, most
fMRI data are collected with a predefined EPI or SI acquisi-
tion sequence and are often analyzed within a software pack-
age based on a predefined set of parameters that specify the
preprocessing steps. Many fMRI studies in the literature are
based on an analysis using the general linear model (GLM)
within the statistical parametric mapping (SPM) software
package [14] (Table 1). This observation is supported by the
fact that 67 of the 100 distributable, published datasets avail-
able from the fMRI Data Center [15] were originally ana-
lyzed using some version of SPM [16]. As a result, it is

preprocessing parameters within SPM or one of the other
fMRI processing packages that are readily accessible to
researchers and define the majority of processing pipelines
that are used in the field. In this article SPM96, SPM99, and
SPM2 refer to versions of the SPM software package. One of
the challenges facing both academic researchers interested in
fMRI processing pipelines and general users of the major
software packages (Table 1) is the difficulty in identifying
the current preprocessing pipeline practices in most major
research groups. This information only partly exists in the
academic literature and the e-mail discussion lists and user
manuals of major software packages. 

There is an ever-expanding collection of techniques and
software tools available with which to assemble and apply
many different data-preprocessing pipelines to fMRI datasets.
One of the challenges facing the functional neuroimaging
community is how to choose from among this combinatorial
explosion of possible pipelines. This poses a range of critical
issues, not the least of which is the day-to-day choice of which
tools/packages to use and/or download and learn to use. All
too often, this choice is resolved expediently in favor of avail-
ability, familiarity, and ease of use. I hope this review of the
preprocessing literature will help to alert researchers to new
approaches and possible preprocessing pipeline options that
might be important to their research.

Fig. 1. A schematic representation of the flow of data through the fMRI processing pipeline from the acquisition of raw, k-space
data, reconstruction by inverse Fourier transform to MRI and fMRI images, through the preprocessing pipeline and finally data
analysis to produce statistical parametric images (SPIs) for identification of activated brain regions. Double-headed arrows indi-
cate constraints and parameters moving in both directions.
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The Steps of an fMRI Preprocessing Pipeline
Figure 2 illustrates the steps within the fMRI preprocessing
pipeline defined by Figure 1. The individual steps are dis-
cussed in the following under their separate headings—except
for quality control (QC), which is a sometimes neglected but
an extremely important element of a well-executed prepro-
cessing pipeline. Each of the QC stages QC2–QC5 will be dis-
cussed as part of the preceding processing step. 

Quality Control 1
This first stage is perhaps the most critical, and it embodies the
general principle that it is vital to look at the raw image data
using viewing/survey tools, e.g., those provided in the major
software packages. Performing QC1 is critical to avoiding run-
ning entire preprocessing and data analysis pipelines on poor-
quality data. Unfortunately, because three-dimensional (3-D)
fMRI image volumes, or scans, are typically collected one
two-dimensional image slice at a time, they are susceptible to
individual slice artifacts due to timing errors and radio fre-
quency spikes. It is not uncommon on some scanners to see
one or more slices in a single image volume that have some

form of image artifact while the majority of the slices are of
good quality. An example is shown in Figure 3, where a few
adjacent volumes from several hundred had major artifacts in
individual slices in the lower half of the brain.

Given the thousands of slices that may need to be viewed,
the major software packages have all implemented cine view-
ers with which many slices may be rapidly reviewed using the
eyes’ sensitivity to dynamic changes to detect anomalous
slices. This visual review should be supplemented with an
exploration of the spatio-temporal structure of the multivariate
time series of each subject’s data. A number of simple
approaches, such as plotting the time series of slice means, are
discussed in [6], and many of these are available as supple-
mental software tools for the major packages, such as in the
SPM2 diagnosis toolbox [17]. An alternative approach
involves performing a principal component analysis (PCA)
[18] or independent component analysis (ICA) [19] of the spa-
tio-temporal time series from each subject. For example, both
PCA and ICA can be run within the Multivariate Exploratory
Linear Optimized Decomposition into Independent
Components (MELODIC) tool in the Functional MRI of the

Table 1. General lists of fMRI software tools.

Bibliography on Neuroinformatics http://www.imm.dtu.dk/~fn/bib/Nielsen2001BibNeuro informatics/node8

Analysis and Processing: Tools1 html#SECTION00081000000000000000

Internet Analysis Tools Registry2 http://www.cma.mgh.harvard.edu/iatr/display.php?spec=all 

Some Software Tools with Flexible Preprocessing Pipelines and Data Analysis Models

Analyses of Functional Images (AFNI)3 http://afni.nimh.nih.gov/afni 

Brainvoyager (BV)4 http://www.brainvoyager.com/ 

FMRIB’s Software Library (FSL)5 http://www.fmrib.ox.ac.uk/fsl/ 

Statistical Parametric Mapping (SPM)6 http://www.fil.ion.ucl.ac.uk/spm/

Selected Sites That Specify Default Processing Pipeline Choices

SPM99 and SPM2 processing pipelines7 http://www.mrc-cbu.cam.ac.uk/Imaging/Common/fmridefaults.shtml

SPM99 fMRI processing pipelines8 http://www-psych.stanford.edu/~kalina/SPM99/Protocols/spm99_prepros_ prot.html

SPM99 fMRI processing pipelines9 http://psyphz.psych.wisc.edu/~oakes/spm/SPM99_demo_fmri.pdf

An AFNI processing pipeline10 http://brainimaging.waisman.wisc.edu/~tjohnstone/AFNI_I.htm

Neuroimaging Workflows in Fiswidgets11 http://grommit.lrdc.pitt.edu/fiswidgets/flow_doc/index.html
1Maintained by Dr. Finn Nielsen in the Informatics and Mathematical Modeling group of the Technical University of Denmark.
2Maintained by the Centre for Morphometric Analysis at Massachusetts General Hospital, Harvard University.
3Free research software from the Scientific and Statistical Computing Core of the National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland.
4Commercial software from Brain Innovation, B.V., Maastricht, The Netherlands.
5Free research software from the Oxford Centre for Functional MRI of the Brain (FMRIB), Dept. Clinical Neurology, John Radcliffe Hospital, Oxford University.
6Free research software from the Functional Imaging Laboratory, Welcome Department of Imaging Neuroscience, Institute of Neurology, University College London.
7MRC Cognition and Brain Sciences Unit (CBU) fMRI processing web pages maintained by Dr. Matthew Brett.
8Developed by Dr. Kalina Kristoff while a Ph.D. student and postdoctoral fellow in the Psychology Department, Stanford University.
9Developed by Dr. Terry Oakes, Director of Image Analysis and Visualization, The Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin—Madison.
10Developed by Dr. Tom Johnstone, The Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-—Madison.
11Processing pipelines that may be downloaded and run within the neuroimaging workflow management software, Fiswidgets [143].

There is an ever-expanding collection of

techniques and software tools available with
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data-preprocessing pipelines to fMRI data sets.
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Brain (FMRIB) Software Library (FSL). The recent results
from Beckmann and Smith [20] using MELODIC indicate that
their probabilistic ICA (PICA) may have a number of advan-
tages over standard ICA and PCA for both identifying and
removing artifacts. Figure 4 illustrates PICA’s ability to
uncover many potential artifactual time series as separate
components from a single fMRI dataset. One of the options
with PICA is to filter the dataset by removing user-identified
PICA components. This is likely to be a powerful technique
for identifying and removing unwanted effects. A preliminary
investigation of denoising using PCA and ICA has been per-
formed by [21].

Another critical QC issue is image orientation, particularly
absolute identification of the left and right hemispheres of the
brain in an fMRI image volume. This problem is almost impos-
sible to resolve post-hoc because of the left-right symmetry of
normal brains. When setting up a new fMRI processing pipeline
or changing any element in it, the pipeline should be retested
with a phantom image containing absolute left-right labels. A
quick search of the e-mail discussion lists of any of the major

software packages reveals that this issue has been a constant
problem. This problem occurs partly because there are two
image display conventions in medical use: radiological or LAS
(left brain = +x; anterior brain = +y; superior brain = +z),
and neurological or RAS (right brain = +x; AS is the same as
described for LAS). These conventions evolved because radiol-
ogists are taught to view images with left-right swapped as
though viewing a supine subject from the feet (i.e., image left is
subject right), and neurologists retain a subject’s left-right orien-
tation as though viewing from the head (i.e., image left is sub-
ject left). The most common fMRI file format, ANALYZE
(http://www.mayo.edu/bir/PDF/ANALYZE75.pdf) assumes an
LAS convention and does not formally support the neurological
RAS convention. Unfortunately, the standard structural tem-
plates used by most groups (see “Registration III: MRI-
Template”) use the RAS convention, and this confusion has
been dealt with differently by different software packages. 

To deal with this problem, a new format for fMRI has been
developed by the Data Format Working Group (DFWG), a
committee set up under the Neuroimaging Informatics

Technology Initiative (NIfTI,
http://nifti.nimh.nih.gov/dfwg), which
is sponsored by the National Institutes
of Mental Health, Neurological
Disorders and Stroke, and Biomedical
Imaging and Bioengineering at the
National Institutes of Health in the
United States. The committee devel-
oped the NIfTI-1 format to provide an
ANALYZE-compatible replacement
for the current range of ANALYZE
variants, both for file interchange and
data storage. The four major fMRI
data analysis packages in Table 1 are
members of the DFWG and have
agreed to use this format in the future
with support for both input and out-
put. NIfTI-1 resolves the LAS-RAS
confusion by explicitly storing a
voxel-index to spatial-coordinate
transformation, typically based on
scanner coordinates, in addition to a
general affine transformation [22].
For an excellent summary of this state
of affairs with additional useful URL
links, see the SourceForge Web page
contributed by Darren Weber
(http://eeg.sourceforge.net/mri_orien-
tation_ notes.html).

Registration I: fMRI-fMRI,
Slice-Timing and
Geometric Unwarping
Assuming the reconstructed images
pass QC, the next step is to spatially
align voxels across the sequentially
collected fMRI image volumes. This
ensures that each voxel’s time series is
an accurate representation of the
BOLD time series for a voxel at a
constant spatial location in the brain.
The primary sources of time series

Fig. 2. A schematic representation of data flow through the preprocessing pipeline.
Blue arrows represent structural MRI data, green arrows show the all-in-one approach,
and red arrows illustrate the summary statistic approach to traversing the preprocess-
ing steps that are discussed in the text. Gray boxes group steps that have conceptual
similarities and/or strongly interact and may therefore be treated together, algorithmi-
cally and/or conceptually, as one combined processing stage in the pipeline. The QC
points discussed in the text are marked between steps as QC1–5. Double-headed
arrows depict strong interactions such that in some pipelines these steps will be com-
bined into a single algorithm.
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inaccuracies are 1) physical head motion, 2) within-volume
slice-timing differences, 3) geometric distortions due to mag-
netic field inhomogeneities caused by susceptibility effects,
and 4) residual-movement artifacts left after standard motion
correction techniques and stimulus-coupled motion.
Susceptibility artifacts are caused by the relatively large change
in local magnetic field strength that
occurs at a boundary between materials
with very different magnetic susceptibili-
ty properties, e.g., an air- or bone-tissue
boundary in the brain. Figure 4 illustrates
several PICA components that relate to
these artifacts. Figure 4(a) demonstrates
typical edge artifacts seen as a conse-
quence of uncorrected head motion.
Figure 4(c) demonstrates signal fluctua-
tions close to the sinuses, which are typi-
cal of the patterns resulting from the
interaction of head motion and suscepti-
bility-induced field inhomogeneities.
Figure 4(d) illustrates phase artifacts,
which can occur in the phase-encoding
direction of slice acquisition [6].

Physical head motion cannot be com-
pletely eliminated while scanning, but it
may be considerably reduced with care-
ful use of head-immobilization tech-
niques when placing the subject in the
scanner and with training in an MRI
simulator to accustom the subject to the
scanning environment [6]. Using an
MRI simulator, Seto et al. [23] have
demonstrated that a subject’s demo-
graphic group (i.e., stroke versus age-
matched controls versus young adults) is
more important than the type of motor
task being performed in determining the
range of head movements likely to be
encountered in an fMRI study.

There is a large body of literature on
retrospective correction of rigid-body
head motion in fMRI, with each of the
major packages having implemented
their own approach: AFNI, [24]; FSL,
motion correction by FMRIB’s linear
registration tool (MCFLIRT), [25]; SPM,
[26], [27]; and BrainVoyager (the
approach used seems to be unpublished).
In addition, the automatic image registra-
tion (AIR) package developed by Roger
Woods is widely used [28]–[30]
(http://bishopw.loni.ucla.edu/AIR5/
index.html). All of these approaches
assume that the stack of slices compris-
ing a volume are collected instantaneous-
ly, and that only rigid movement of the
entire stack occurs across sequentially
collected scans, i.e., a rigid-body
assumption. Some of these algorithms
have been compared by Ardekani et al.
[31], who tested AIR3.08-linear, SPM99,
and AFNI98; Morgan et al. [32], who

tested AFNI96 and AFNI98, SPM96 and SPM99b, and
AIR3.08 with linear and third-order polynomial registration;
and Jenkinson et al. [25], who tested AIR3.08-linear, SPM99,
and FSL’s MCFLIRT. 

These papers illustrate several of the difficulties in evaluat-
ing preprocessing pipelines based on the existing literature.

Fig. 4. Components from a probabilistic independent component analysis (PICA)
depicting associated spatial maps (left) and time courses (right): (a) head motion
(translation in Z); (b) sensory motor activation; (c) signal fluctuations in areas close
to the sinuses (possibly due to interaction of B field inhomogeneity with head
motion); (d) high-frequency MR ghost; and (e) resting-state fluctuations/physiologi-
cal noise. The image is reproduced courtesy of Beckmann and Smith [20] from IEEE
Transactions on Image Processing which contains further details.
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Fig. 3. Slice-dependent artifacts that can occur in a single volume image of an fMRI
time series as a result of transient scanner instabilities during sequential slice collec-
tion. (b) A severely corrupted spiral acquisition slice from the (a) lower half of the
brain (see saggital image) compared with (c) a normal slice from the upper half of
the brain.
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First, there has never been a test of all five registration tech-
niques from the four software packages in Table 1 and AIR,
and these five do not constitute all of the registration algo-
rithms in use and being developed (e.g., [33], [34]). Secondly,
the software revision level is not always specified, and even if
it is it may be difficult to establish the exact form of the previ-
ously published registration algorithm that is currently being
used in a particular package. In addition, most packages pro-
vide many options, the settings of which should be, but are
rarely, listed in the literature.

Important sources of error in retrospective algorithms
designed to correct for physical head motion are the choice of
the cost function for iterative algorithmic optimization and the
interpolation technique used to resample the fMRI volumes
and remove the measured movement effects. 

Cost Functions
A cost function measures the similarity of each image volume
in a time series to a reference volume, usually chosen as one
of the scans in the time series, e.g., the first or the middle vol-
ume. The cost function is used to determine when an algo-
rithm has generated sufficiently similar volumes to provide
optimal estimates of the six rigid-body movement variables
(three rotation and three translation). Many of the differences
between the algorithms relate to the choice of a cost function
and the optimization strategies implemented to iterate to a
global, as opposed to a local, minimum. It has been clear for
some time that intensity-based cost functions outperform land-
mark and fiducial-marker-based approaches [35], [36]. Much
work during the last decade has indicated that cost functions
other than a difference-of-squares perform best, although there
is no consensus about any one optimal cost function. For
example, Freire and Roche [37] found that mutual information
and robust Geman-McClure estimators performed better than
mean square error or correlation ratios in minimizing interac-
tion with brain activation signals. Jenkinson et al. [25] found
that correlation-ratio-based measures outperformed mutual
information and least squares but did not consider interactions
with brain activations.

Freire and colleagues have demonstrated that the standard
retrospective alignment algorithms may even create spurious
activations, particularly with least squares cost functions [38].
In addition, they have shown that more robust cost functions
(i.e., the Geman-McClure M-estimator) reduce but do not
eliminate the influence of task activation on estimated motion
variables [37]. Two possible approaches to solving this prob-
lem using modified computational frameworks with least
squares cost functions have been proposed and are compared
in [34]. They find that both the down-weighting of the activat-
ed voxels that potentially bias motion variable estimates and
simultaneously solving for motion and activation components
in a GLM framework provide estimates that are robust to the
effects of task activation.

Interpolation
Using interpolation techniques, new values are created (i.e.,
resampled) at new spatial locations. This is done using the six
measured movement variables to define an interpolation func-
tion as a mathematical combination of the original voxel val-
ues in the spatial neighborhoods of the new locations. The
type of interpolation scheme used represents a tradeoff
between residual interpolation errors and speed. The ideal

scheme for performing these interpolations on band-limited
images, without introducing artifacts, is Fourier interpolation
[24], [39]. In the spatial domain, this is equivalent to full-sinc
interpolation, which uses every voxel in the image to calculate
each new voxel value, a very slow and impracticable proce-
dure for 3-D images. In order to gain speed, a truncated sinc is
often used that needs values from only the local neighborhood
of the new voxel location [40]. For AIR, Woods recommends
a chirp-z interpolation within plane and a linear interpolation
between planes [28]. Whether one of these schemes or some
other is used, most interpolation approaches leave residual
errors in the realigned volumes [28], [43] (trilinear interpola-
tion leaves much larger residual errors than sinc-related and B-
spline schemes [41], [42]). For example, Strother et al. [1]
have demonstrated that using trilinear instead of windowed-
sinc interpolation in a group-fMRI analysis is equivalent to
additional in-plane smoothing with a Gaussian FWHM of
approximately 1.5 pixels. Because interpolation techniques
tend to introduce additional, spatially varying data smoothing,
it is usually better to combine multiple resampling transforma-
tions (e.g., fMRI-fMRI and fMRI-MRI) and apply just one
resampling and interpolation step.

Slice Timing
The second problem causing inaccuracies in time series is
the sequential collection of slices within each volume, i.e.,
slice timing (Figure 2). While a new volume may be collect-
ed every 2–3 s (defined by the so-called acquisition TR), the
individual slices are collected sequentially during this time
period, sometimes in an interleaved manner, i.e., all odd
slices are collected first followed by all even slices. For the
usual ascending or descending sequential acquisitions, the
last slice is collected almost one TR after the first slice; and
with interleaved acquisitions, adjacent slices are collected a
full TR/2 apart. Slice-timing correction uses interpolation
between the same slice and voxel in neighboring acquisition
TRs to estimate the signal that would have been obtained had
the slices been acquired at the same time. The interpolated
time point is typically chosen as the TR/2 time to minimize
relative errors across each TR [6].

Any movement during the TR for one volume will affect
the individual slices differently so that there is an interaction
between movement, the rigid body assumption, slice-timing
correction, and the type of slice acquisition sequence. A sepa-
rate correction for slice-timing with temporal interpolation is
provided by the major software packages, but there are no
clear rules regarding whether this should be applied before or
after rigid-body movement correction. 

There appears to be a general consensus that slice-timing
correction is probably unnecessary for most block designs,
although this has not been clearly demonstrated in the litera-
ture. Huettel et al. [6] have proposed commonsense rules for
single-event designs if the timing and registration corrections
are performed separately: slice-timing correction should pre-
cede motion correction for an interleaved slice acquisition
with a long TR; with sequential acquisitions or short TRs,
motion correction should be done before timing correction.

There are two experimental approaches that integrate slice-
timing corrections with slice registration: Kim et al. [44] intro-
duced the mapping of single fMRI slices to a reference MRI
collected in the same scanning session, the so-called map-
slice-to-volume (MSV) approach, and Bannister et al. [45]
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have introduced a preliminary model of constrained slice
motion between sequential volumes. The MSV approach is
discussed further under “Registration II:fMRI-MRI.”

Susceptibility Artifacts
The third cause of motion-dependent inaccuracies in voxel
time series is the interaction of head motion with magnetic
field inhomogeneities, which are primarily caused by air- and
bone-tissue magnetic susceptibility gradients, particularly at
higher field strengths. A number of direct acquisition
schemes exist to reduce this artifact, including static gradient
shimming and modified pulse sequences, but appreciable
image distortion typically remains in fMRI images [6]. In
addition to fixed effects resulting from the static magnetic
field, a voxel moving across an air-tissue boundary due to
physical motion is further spatially displaced and distorted as
a result of geometric effects due to its changing position in
the local susceptibility gradient. This results in a dynamic dis-
tortion component as a result of movement. Such susceptibili-
ty gradients are most prominent in the frontal and temporal
lobes with the boney, air-filled sinuses, causing serious arti-
facts in measurements of the orbito-frontal lobes of the brain
[e.g., Figure 4(c)]. The effect may be somewhat reduced by
acquiring smaller voxels to limit the gradient change per
voxel, but this comes with tradeoffs of increased scan time
and reduced signal to noise/voxel. Two retrospective, geo-
metric unwarping approaches have been developed. The first
and most common method used involves measuring the mag-
netic field inhomogeneities to create a field map for the fixed
component, which is used to modify the acquired fMRI
images [46], [47]. Attempts have also been made to estimate
and use dynamic field maps collected at each time point [48].
If motion correction and geometric unwrapping are per-
formed separately, Huettel [6] recommends performing rigid-
body alignment before magnetic field distortion correction.
This ordering is supported by Cusack et al. [49] and Elliot et
al. [50], who have recently shown that it improves registra-
tion of motion-corrected, EPI fMRI images to structural MRI
images in 3 T and 4 T scanners, respectively. The second ret-
rospective method involves simultaneous, direct estimation of
the rigid-body transformations for motion correction, together
with a geometric unwarping correction, and this technique
has been included in the SPM2 software package [51].

Residual-Movement Artifacts
and Stimulus-Correlated Motion
The final sources of motion-dependent errors are residual-
movement artifacts and stimulus correlated motion.

It is well-established that resampling using rigid-body trans-
formation variables is insufficient to remove all motion effects
from fMRI time series. Friston et al. [52] suggested that this is
due to spin-history effects, and Woods et al. [28] noted that
“motion-correlated artifact is commonly the greatest source of
global variance in the motion-corrected dataset” and suggested
that these effects are most likely due to residual interpolation
effects (see also [43]). All of these investigators proposed
removing these remaining movement effects by performing a
GLM analysis using residual motion estimates as unwanted-
effects regressors (Figure 2). A variety of choices are available
for the regressors: the raw rigid-body movement variables, the
first few components of their PCA [28], or sine and cosine
basis functions with a one-voxel cycle [43]. Such residual-

movement regression must be performed with care in the pres-
ence of stimulus-correlated motion as outlined in the following.

It is not uncommon, particularly in motor tasks, for subjects
to produce small head movements that are correlated with per-
forming the task. Bullmore et al. [53] provide a striking
demonstration of the impact of stimulus-correlated motion
when comparing schizophrenics, who are more susceptible to
this confound than normal controls. They demonstrate that the
standard motion-regression approach of regressing out resid-
ual motion effects based on the estimated motion variables
does not work because the variables are correlated with the
stimulus. They propose an additional correction based on
modeling voxel-based experimental effects with and without
residual motion-regression correction and show that their cor-
rection significantly affects the activation pattern for schizo-
phrenics versus controls.

Other Issues
There are a number of other trends at this preprocessing stage:
1) using the pulse sequence to monitor rigid-body motion [54],
2) developing monitoring techniques as summary measures for
QC [55] or to acquire the rigid-body transformations through
external monitoring [56], and 3) volume-by-volume motion
correction in real time [57].

Quality Control 2
At a minimum, plots of the six rigid body motion variables
should be examined to determine the estimated range of
motion in the data. It is also helpful to rerun the registration
algorithm on the motion-corrected data and to compare these
new movement variables from the motion-corrected data with
the original estimates. Many centers use a rule-of-thumb that
suggests that data should be discarded if estimated motion is
more than 1–2 mm, although this typically depends on the
scarcity of the data and the difficulty of replacing it. Such QC
bounds may be applied directly to the estimated rigid-body
motion plots or to calculated mean-voxel or maximum-voxel
displacement values [35]. In addition, the motion variables
should be correlated against the stimulus paradigm to see if
there is strong evidence of stimulus-coupled motion. If large
correlation coefficients are obtained, it may be necessary to
consider additional processing steps such as those outlined by
Bullmore et al. [53], although a more robust strategy would
be to always evaluate SPI differences with and without resid-
ual motion regression. PICA and PCA are also useful to com-
pare the change in components before and after movement
correction, i.e., movement correction should increase the per-
cent variance accounted for by stimulus-related components.

Physiological Noise Correction
Physiological noise in fMRI studies arises from cardiac-linked
brain pulsations (~0.8 – 1.3 Hz), and bulk susceptibility varia-
tions of the chest with respiration that propagate as small mag-
netic field variations in the brain (0.1 – 0.3 Hz). Kruger and
Glover [58] have demonstrated that at 3.0 T, these physiologi-
cal noise sources are greater than those from system and ther-
mal noise and significantly greater in gray matter than white
matter. Provided the TR is fast enough to capture the un-
aliased cardiac effects (i.e., <500 ms), these noise sources
may all be seen in the power spectrum and can be removed by
notch filtering [59] or the more sophisticated multitaper tech-
niques of Mitra and Pesaran [60]. The multitaper techniques
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have also been used to reveal further intrinsic vascular pulsa-
tions at about 0.1 Hz [61]. However, most fMRI studies are
conducted with TR ≥2 s, causing the cardiac noise to be
aliased onto lower frequencies.

Many other approaches have been proposed for suppress-
ing the cardiac and respiratory noise, and they fall into four
groups: two based on k-space/image measurements with
application of the estimated physiological correction variables
in k-space [62], [63] or the reconstructed images [64], [65]
and two using external monitoring of the cardiac and respira-
tory cycles to correct physiological effects in k-space [66] or
in the reconstructed images [67]. These last two approaches
using external physiological measurements are dubbed retro-
spective k-space correction (RETROKCOR) and retrospec-
tive image space correction (RETROICOR), respectively.
Glover et al. [67] found that RETROICOR reduced localized
physiological noise to a greater extent than RETROKCOR
because the image-based technique is not limited, by ade-
quate signal-to-noise, to k-space regions near the origin, i.e.,
higher spatial frequencies are smoothed out by
RETROKCOR. Chuang and Chen [65] compared their
image-based physiological artifacts estimation and correction
technique (IMPACT) with RETROKCOR and found that
IMPACT performed almost as well, suggesting that external
physiological monitoring might not be necessary. However,
the testing reported in the literature for these algorithms is
quite limited, and none of the comparative testing reports
appear to have considered interaction with head motion. A k-
space correction occurs before motion correction, while an
image-based correction may be performed before or after
motion correction. Results for the comparison of these
approaches are presumably dependent on the degree of image
movement and on the particular subjects and populations
being studied. However, much of the testing was performed
with only a few slices of brain because of the temporal sam-
pling requirement for capturing the cardiac cycle. In the most
realistic dataset used by Glover (TR = 1,000 ms, 12 slices, 5-
mm thick), which is still considerably faster than typical
whole-brain fMRI studies with TR ≥ 2 s, subjects performed
no task. In a more realistic whole-brain study with TR = 5 s

and subjects performing a simple motor task, Tegeler et al.
[9] demonstrated that RETROKCOR significantly improved
run-to-run reliability for simple multivariate but not for uni-
variate analyses in a few young subjects. A simple, block-
design, finger-opposition task was scanned during three
identical runs on a 4T scanner. The reliability of activations
was measured across the runs as a function of the data
analysis model [i.e., univariate t-test or multivariate Fisher’s
Linear Discriminant Analysis (FLDA)], with and without
physiological corrections for respiration and respiration and
cardiac image noise. Physiological corrections were per-
formed using the externally monitored respiration and car-
diac signals [66], and reliability was measured as the
fraction of all the voxels activated across all three runs that
appeared in only one run, appeared in any two runs, and
appeared in all three runs. Respiration has a large impact on
the fraction of highly reliable voxels for FLDA but not for
the t-test. (Figure 5). There appears to be no data describing
the relative importance of different types of physiological
corrections in real, whole-brain imaging of populations sus-
ceptible to movement-related confounds.

Brain-Nonbrain Segmentation
Segmentation and classification of MRI brain voxels, MRI-
MRI warping, and some cost functions used with fMRI-MRI
alignment all perform better if the nonbrain tissues (e.g., scalp
and skull) are identified and removed from MRI images.
Many of the existing algorithms have recently been compared
by Boesen et al. [68], Rex et al. [69], and Segonne et al. [70].
Boesen found that the consensus algorithm (Minneapolis
Consensus Strip, McStrip) developed by Rehm et al. [71] per-
formed better than any individual algorithm, and this finding
was echoed by Rex but by using a different consensus
approach based on training datasets and somewhat different
algorithms. Segonne used a new hybrid approach with a
watershed algorithm, which produces a segmented brain vol-
ume, to initialize a deformable surface model that integrates
geometrical and atlas-based information developed on a
sphere. Rehm provides a summary of validation results for 11
algorithms tested between 1997 and 2002, and Boesen

Fig. 5. A simple, block-design, finger-opposition task scanned during three identical runs on a 4 T scanner. The reliability of acti-
vations was measured across the runs as a function of the data analysis model (a) univariate t-test or (b) multivariate Fisher’s lin-
ear discriminant analysis (FLDA), with and without physiological corrections for respiration (resp.) and respiration and cardiac
(car.) image noise. Physiological corrections were performed using externally monitored respiration and cardiac signals [66],
and reliability was measured as the fraction of all the voxels activated across all three runs that appeared in only one run (non),
appeared in any two runs (moderately reproducible), and appeared in all three runs (highly). Respiration has a large impact on
the fraction of highly reliable voxels for FLDA, but not for the t-test. Image is reproduced from [9] (Human Brain Mapping, Wiley
and Sons, 1999).
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demonstrates that McStrip consistently outperformed SPM2’s
brain extraction algorithm [72], FSL’s Brain Extraction Tool
(BET) [73], and the Brain Surface Extractor (BSE) [74]. Rex
demonstrates that his Brain Extraction Meta-Algorithm
(BEMA) outperforms BET, BSE, AFNI’s 3dIntracranial pro-
gram [75], and FreeSurfer’s MRI Watershed [76]. Segonne
compared the hybrid algorithm with BET, BSE, Freesurfer’s
strip skull [76], and Hahn and Peitgen’s [77] watershed algo-
rithm and found that it performed best across a variety of
metrics with few misclassified voxels. All of the above algo-
rithms aim to extract an accurate brain-surface boundary,
generally defined as the outer pial surface of the cortex.
However, Kovacevic et al. [78] developed an algorithm with
the goal of extracting the brain and surrounding cerebrospinal
fluid (CSF) in the subarachnoid space for studying longitudi-
nal structural changes. This alternate extraction target is
potentially less useful for fMRI preprocessing, although this
hypothesis has yet to be tested.

Intensity Bias Correction
Structural MRI volumes tend to have nonuniform tissue inten-
sities, particularly at higher fields, as a result of the nonuni-
form sensitivity profiles of the radio frequency coils used to
transmit and receive the signal in MRI scanners [6].
Significant nonuniformities may bias the results of algorithms
that utilize image intensities (e.g., segmentation and registra-
tion) in their cost functions and should be corrected. A variety
of algorithms have been developed for correcting intensity
nonuniformities and new approaches are being continually
developed [79], with an emphasis on correction in the pres-
ence of atrophy from dementia and aging [80] and longitudi-
nal studies of structural changes over time [81]. A quantitative
comparison of six techniques was performed by Arnold et al.
[82] in which two locally adaptive algorithms provided the
most reliable correction: nonparametric, nonuniform intensity
normalization (N3) [83], and bias field corrector (BFC) [74].
Shattuck compared N3 and BFC and found that BFC outper-
formed N3 on phantom data. There are many algorithms, such
as BFC, that are incorporated into tissue segmentation and
classification packages because bias correction is a necessary
preprocessing step for (and interacts with) tissue classification
[84]. As a result, there are algorithms for correcting intensity
nonuniformities that are part of tissue segmentation and classi-
fication packages that have not been compared, even across
the major software packages, e.g., from within FMRIB’s auto-
mated segmentation tool (FAST) [85].

Quality Control 3
At a minimum, the results of brain-nonbrain extraction and
intensity bias correction must be visually assessed and repeat-
ed, possibly with a different algorithm/cost function, if clearly
unsatisfactory. Training examples of satisfactory and unsatis-
factory results should be available for visual comparisons.
Quantitative metrics for assessing these preprocessing steps
are urgently needed.

Registration II: fMRI-MRI
After physiological correction, following the green prepro-
cessing path in Figure 2 (see “Preprocessing Paths”), the regis-
tered fMRI time series is aligned with a high-resolution MRI
(fMRI-to-MRI) that may have undergone brain-nonbrain seg-
mentation and intensity bias correction. The MRI is usually

collected during the same scanning session and has much less
distortion and better tissue contrast than EPI or SI fMRI scans.
It is collected 1) to visualize single-subject task activations
overlaid on each individual subject’s anatomical locations;
2) to align the fMRI scans to a common coordinate space
defined by a structural template, combining measured fMRI-
to-MRI and nonlinear MRI-template registration transforma-
tions (i.e., warps), before data analysis; and 3) to warp
single-subject data-analysis results to the template’s coordi-
nate space for higher-level group analysis.

After Registration I, a mean fMRI scan is usually calculated
and used as the target to calculate the fMRI-MRI transforma-
tion variables. The MRI is usually resampled into the fMRI
space because the higher-resolution image will suffer less dis-
tortion after interpolation. At least an affine (12 parameter)
fMRI-MRI transformation should be calculated to allow for
scaling between the fMRI and MRI images, and with a robust
cost function (e.g., mutual information), this will not require
the brain to be segmented from the nonbrain portions of the
MRI before alignment, as described in the following. If using
AIR’s cost functions [30], which do not include mutual infor-
mation, the best results are achieved if the brain is segmented
from the nonbrain tissue before registration. Note that while
mutual information and correlation cost functions have been
proposed as optimal for fMRI-fMRI alignment, to my knowl-
edge there is no paper comparing the major packages’ perfor-
mance for the fMRI-MRI registration problem. However,
Cusack et al. [49] show that if EPI images are corrected for
magnetic field inhomogeneities, the values of optimal mutual
information obtained between fMRI and MRI using SPM99
are significantly improved. 

As one approach to solving the individual slice movement
problem, the so-called map-slice-to-volume (MSV) tech-
nique, aligns individual fMRI slices to each subject’s MRI
acquired during the same scanning session. This approach
was successfully demonstrated by Kim et al. [44] and has
recently been extended to include joint-estimation of each
slice’s orientation under smoothness constraints on the sub-
ject’s movement trajectory over time, i.e., joint MSV. In addi-
tion, the MSV approach has been combined with a concurrent
iterative image reconstruction incorporating correction for
field-inhomogeneities [47]. To my knowledge, this is the first
combined solution that corrects for the interactions between
slice timing, field-inhomogeneities, and fMRI-to-fMRI image
registration, while also achieving fMRI-MRI alignment.

Different Preprocessing Paths
There are two different preprocessing paths: 1) an all-in-one
analysis (green path, Figure 2), in which raw data is complete-
ly preprocessed before data analysis, as is typical in SPM, and
2) a summary statistic approach (red path, Figure 2), with indi-
vidual-subject preprocessing and data analysis, without apply-
ing Registration II and III to the fMRI data, followed by
registration of the resulting SPI’s for further higher-level data
analysis, as is typical in FSL [84].

The structural MRI preprocessing is used by both approaches
(blue path, Figure 2). The all-in-one analysis includes (green
path), Registration I, physiological correction, Registration II
and III, and spatial filtering through to a final SPI for both indi-
vidual subjects and groups. If planning a group analysis, the
motion- and physiology-corrected fMRIs would typically be
passed straight to Registration III, together with the fMRI-MRI
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transformation, and bias-corrected and brain-nonbrain seg-
mented MRIs; in order to calculate the fMRI-MRI transforma-
tion, the averaged fMRI would have previously been passed to
Registration II. In Registration III, these elements are com-
bined to create a set of subjects’ fMRI scans aligned to a com-
mon coordinate system (see Registration III), and these scans
are passed on to spatial smoothing.

The summary statistics approach (red path) includes
Registration I, physiological correction, and spatial filtering
through to an SPI for each subject. Transformations from
Registration II are then applied to individual SPIs so that they
may be displayed on their subjects’ MRIs, and by combining
transformations from Registration II and III, SPIs are resam-
pled into a common space to perform a higher-level group
analysis. Note that the SPIs generated for passing to a higher-
level analysis are different from those typically output for
thresholding to detect brain activations.

There are a number of other possible combinations of the
above steps: 1) performing physiological correction before
Registration I or after Registration III, 2) combining transfor-
mations from Registration I, II, and III into a single resam-
pling step of the raw data into a common space, which
minimizes interpolation smoothing effects, and 3) collecting
both low-resolution, structural EPI/SI scans that match the
low-resolution fMRI scans and high-resolution MRIs in the
same subject; the fMRI scans are aligned to the low-resolution
structural EPI/spiral scans, which are warped to the high-reso-
lution MRI to complete Registration II [86].

Quality Control 4
The fMRI-MRI alignment should be visually assessed.
Training examples of satisfactory and unsatisfactory results
should be available for visual comparisons. Quantitative met-
rics for assessing this preprocessing step are urgently needed.

Registration III: MRI-Template
There are two broad categories of algorithm based on cost
functions using surface-based landmarks or voxel-based inten-
sities. I will primarily focus on intensity-based algorithms as
they are the most widely used and are readily available in the
major software packages. I will also briefly discuss combined
landmark and intensity-based schemes for image volumes and
their recent extension to surface-based registration approaches.
Following Ardekani et al. [87], intensity-based matching
approaches may be categorized into 1) piecewise-linear
(Tailarach transformation [88] in AFNI [89]) and affine trans-
formations (AIR [90]; FLIRT in FSL, [25]; SPM [27]) with
relatively few parameters, 2) nonlinear transformations (i.e.,
warps) with hundreds of degrees of freedom (SPM, [91]; AIR,
[90]), and 3) highly flexible warps with thousands of degrees
of freedom [92]–[99]. Note that the higher-order algorithms in
2) and 3) above are typically initialized with a low dimension-
al, usually affine, transformation from category 1). Jenkinson
et al. [25] compared the reliability of such affine registrations
for between-subject registration, including AIR and SPM99,
and found that the robustness of the optimization procedure
implemented in FSL’s FLIRT had some advantages in gener-
ating consistent transformations.  

Structural templates are used to define a common coordinate
system that may be used to locate similar regions in the brains
of multiple subjects. The most important is the Talairach sys-
tem based on a single older brain [88]. Most groups have

moved away from the original piecewise linear transformation
defined by Talairach for each individual MRI in favor of a
population standard defined by many MRIs. There are a num-
ber of such standard templates developed by the Montreal
Neurological Institute (MNI) and the International Consortium
for Brain Mapping. These templates are introduced and their
relationship to Talairach coordinates is described by Brett et
al. [100], with additional details and web links at http://
www.mrccbu.cam.ac.uk/Imaging/Common/mnispace.shtml.
As a general rule, the template should match the data being
aligned as closely as possible. Therefore, leaving out
Registration II completely and nonlinearly warping the aver-
age of the movement-corrected fMRI time series directly to a
matched template (e.g., EPI fMRI scans to an EPI structural
template) may minimize the effects of geometric distortion
from magnetic field inhomogeneities. However, this approach
may be less robust than the use of MRIs through Registration
II, due to the lower quality and lower resolution of EPIs com-
pared to MRIs [49]. I would expect this result to depend on
scanner-dependent image artifacts and whether or not the tem-
plate is generic (e.g., in one of the packages) or specifically
built for a particular scanner or even group analysis as outlined
in the following.

An alternative is to develop a group-specific template that
minimizes the differences between itself and all scans for the
group of subjects being analyzed. There have been several pro-
posals for developing such optimal, group-specific templates
[28], [101]–[104], but to date their use has not been compared
with the standard MNI/ICBM population-based templates.

Hellier et al. [105] have shown that global metrics assessing
the registration of structural MRIs improve with increasing
degrees of freedom, but local measures of the match between
cortical sulci are not significantly different between simple,
six-parameter, rigid-body transformations and highly flexible
warps. As a possible means of addressing this surprising
result, a number of groups are exploring the use of intensity-
based algorithms with additional anatomical constraints, such
as major sulcal landmarks or automatically generated features
[106]–[108]. Magnotta et al. [109] have shown average
increases in relative regional overlap with increases in both the
degrees of freedom of an intensity-based algorithm and the
amount of anatomical landmark information used. Recent
developments include the use of structural landmarks to con-
strain warps across cortical surface representations on a sphere
or a flattened representation [110], [111]. 

There are few comparisons of the impact of MRI-based
anatomical warps on functional SPIs from groups. Using
positron emission tomography (PET) and MRI scans, Kjems
et al. [92] demonstrated increased functional activation signals
in a group analysis with a multiscale, intersubject warp evalu-
ated with different cost functions versus affine transforma-
tions. They provided preliminary evidence that improved
structural warps do not necessarily translate into improved
group functional analysis results. Using a similar metric,
Dinov et al. [112] compared PET activation resulting from
seven- and 12–parameter affine and second- and fifth-order
polynomial warps from AIR 3.0. They found an optimal acti-
vation peak for a 12-parameter affine transformation. Crivello
et al. [113] also used PET and MRI scans with an affine and
three warping algorithms: affine and the fifth-order polynomi-
al in AIR 3.0, the basis-function warp in SPM96 [26], and the
flexible, multigrid approach of Schormann and Zilles [114].
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They found that the expected improvement in structural align-
ment with increasing degrees of freedom was matched by only
limited improvements in group functional analysis results,
which were dependent on the amount of spatial smoothing
applied to the PET datasets. These findings agree with the
recent fMRI group-analysis evaluations by Strother et al. [1].
They show that there is a small improvement in global func-
tional performance metrics with third- to seventh-order poly-
nomial warps compared to 12-parameter affine registration
using AIR 5.03 [90] and that this improvement is a function of
fMRI spatial smoothing. However, Ardekani et al. [87] com-
pared AFNI’s Talairach registration with SPM99’s warps and
a highly flexible in-house algorithm (ART) and found a signif-
icant improvement in group-analysis results using ART. One
difference is that Ardekani aligned the individual subject’s
SPIs rather than analyzing the aligned, raw fMRI images as in
Strother et al. Evidence seems to be accumulating that highly
accurate structural warps are not necessary for functional
group analysis, but there is much more work required to
understand the structure-function relationship in young, nor-
mal brains, let alone that found in aging and abnormal brains.

Spatial Filtering
The importance of measuring and manipulating the spatial
correlations of functional neuroimages has been extensively
studied [115]–[117], and the dramatic impact a little spatial
smoothing may have on signal detection power in fMRI
should be carefully considered when specifying a preprocess-
ing pipeline [1], [118]–[120]. In Figure 2, the spatial filtering
step is placed before temporal filtering and unwanted-effects’
regressors to improve variable estimates within these steps.
Spatial filtering follows physiological corrections in Figure 2
to avoid smearing large, local physiological noise sources into
surrounding tissue. Simulation results from Skudlarski et al.
[118] illustrate the increased signal-detection power obtained
by smoothing either the raw data or SPIs. Recent results sup-
port the Gaussian smoothing kernel defaults of 1–2 voxels
FWHM in the major packages and indicate that spatial
smoothing is one of the most influential preprocessing choices
when compared with other steps [1], [121]. Shaw et al. [11]
have shown that optimal spatial smoothing settings vary from
subject to subject, reinforcing the potential advantages of
locally adaptive smoothing approaches [122]–[124] or com-
bining results across multiple spatial smoothing scales [115],
[117], [118]. Wink and Roerdink [125] compared spatial
wavelet denoising with Gaussian smoothing and reported that,
“wavelet denoising methods that introduce relatively little
smoothness are generally preferable over Gaussian smoothing
for denoising fMRI time series.”

An analysis approach related to spatial smoothing is the
definition and extraction of averaged voxel values in
anatomically or functionally defined regions- or volumes-
of-interest (ROIs or VOIs). This approach to data extraction
and analysis was developed and widely used in the PET
community in the 1980s and early 1990s before the devel-
opment of voxel-based analysis techniques [126] and is
becoming more common for fMRI analysis [127]. I expect
the interaction of preprocessing steps with the definition and
analysis of ROIs to become an important topic, particularly
for network analysis using structural equation models,
which require a small number of stable time series to be
extracted from predefined regions of the brain [10].

Intensity Normalization
In fMRI experiments there is additional scan-to-scan variance
at very low spatial frequencies that cannot be readily accounted
for by the experimental stimulus. A variety of global normali-
zation approaches have developed to model and control for
this variation, originally in PET [128], [129] and, based on
these, more recently in fMRI [130]–[132]. Gavrilescu et al.
compared five approaches: grand-mean session scaling
(GMS), proportional scaling (PS), ANCOVA, iterative mask-
ing of activation areas [129], and orthogonalization of the
global estimate [131]. They propose a flowchart that chooses a
normalization technique based on the comparison of SPIs gen-
erated using GMS and PS and the measurement of the correla-
tion between scan means and GLM covariates of interest, such
as the stimulus reference function. Skudlarski et al. [118]
found little benefit for three approaches to PS using simula-
tions but noted that the appearance of large global fluctuations
is very subject dependent, and some subjects may benefit from
intensity normalization.

These intensity normalization techniques interact with the
temporal and spatial filtering approaches because 1) to the
extent that global variations are low- or high-temporal fre-
quency phenomena, they will tend to be removed by low- and
high-pass temporal filters, and 2) spatial smoothing tends to
increase the correlation between voxel time series and global
signals [130]. Using a spatio-temporal basis representation
such as wavelets [133], it may be possible to identify and
eliminate large-scale spatial (i.e., global) components, but this
use of spatio-temporal basis approaches has not been system-
atically investigated. It is likely that in the future adaptive,
spatio-temporal data analysis models will unify questions of
spatial and temporal filtering and intensity normalization with-
in a single step [124].

Temporal Filtering
Previously, I addressed frequency domain filtering in the con-
text of physiological noise correction. In the following, I focus
on low-pass filtering for denoising, temporal smoothing for
control and estimation of temporal autocorrelations (i.e., pre-
coloring), and high-pass filtering for control of low-frequency
noise trends. Low-pass filtering, or temporal smoothing,
applied to individual voxel time series has been found to
degrade signal detection power in block designs [118] and
degrades parameter estimation efficiency even more for sin-
gle-event designs [134]. Precoloring was advocated within the
SPM package before SPM2 [135] to stabilize and obtain unbi-
ased inferential estimates. However, it is now clear that
prewhitening—removal of temporal autocorrelation to whiten
the residual noise—is feasible and should be used to improve
parameter estimation efficiency for inferential significance
testing of GLMs applied to single-voxel time series [84],
[136]. However, if using nonparametric tests that control for
temporal autocorrelation [133], it is unclear if either
prewhitening or precoloring should be used. A related tech-
nique to low-pass filtering is the removal of basis components
representing higher-order, spatio-temporal frequencies, i.e.,
basis function denoising. For example, Strother et al. [1] have
demonstrated that when using a linear discriminant built on a
PCA basis more than 90% of the low-variance principal com-
ponents should be discarded to maximize the linear discrimi-
nant performance. Thomas et al. [21] compared denoising of
fMRI time series with ICA and PCA and found that both

Authorized licensed use limited to: The University of Toronto. Downloaded on July 6, 2009 at 17:28 from IEEE Xplore.  Restrictions apply.



38 IEEE ENGINEERING IN MEDICINE AND BIOLOGY  MAGAZINE MARCH/APRIL 2006

improved the ability to detect a BOLD signal change in the
presence of physiological and scanner noise; ICA was best for
isolation and removal of structured noise, and PCA was supe-
rior for isolation and removal of random noise.

The noise power in the majority of fMRI time series occurs at
low frequencies (f < 0.05 Hz) with an approximately 
1/f envelope. The exact causes of this noise structure remain
unclear, although it is probably some mixture of scanner drift
[137], aliased cardiac physiological noise, and respiratory physi-
ological noise, such as that due to resting fluctuations in arterial
CO2 [138]. Whatever the cause, it is not uncommon to find
adjacent voxels with quite different low-frequency trends, e.g.,
positive and negative slopes. Numerous reports have demon-
strated the importance of removing these trends to improve sig-
nal power [118], [121], but care must be taken to not attenuate
the signal, which in block designs often has a relatively low fun-
damental frequency of around 0.02 Hz (i.e., baseline and activa-
tion epochs of 25 s each). Removal may be effected by explicit
low-pass filtering in the frequency domain—Skudlarski found a
Butterworth filter with a cutoff of 0.35 of the stimulus frequen-
cy performed best [118]—or by regressing out linear and high-
er-order polynomial trends as unwanted effects’ regressors in a
GLM. Alternatively, SPM provides a user-chosen set of cosine
basis functions that are removed by GLM regression from each
voxel’s time series [139]. Optimal preprocessing pipeline
performance has been demonstrated to require adaptive tuning
of the number of detrending, cosine basis functions in groups
[1], and individual subjects [140]. Tanabe et al. [141] tested five
trend removal techniques and found that a cubic spline pro-
duced the largest number of significant voxels among linear,
quadratic, cubic, and wavelet detrending approaches. In addi-
tion, while 42% of the voxels tested required no detrending, the
techniques producing the smallest p-values in each of the
remaining voxels were cubic splines in about 28% and quadratic
and wavelets in about 15% each. Finally, the FSL package has
adopted a quite different nonlinear trend removal approach
using a running lines smoother [142]. Marchini et al. [142] also
note the need to deal with isolated spikes by reducing large
deviations from the mean to within some specified limits. In
summary, there is no consensus as to which high-pass filtering
or detrending approach to use with growing evidence that the
technique(s) should be adapted to the subject or even the voxel
being analyzed.

Quality Control 5
Except for unwanted-effects regressors (see the following) that
are often removed as part of a GLM data analysis, the prepro-
cessing is now complete. Whether or not it is being used as a
data analysis tool, a PICA or PCA should be run at this point
and compared with those run at QC1 and QC2 to examine the
reductions in variance and removal of artifactual components

by the preprocessing pipeline. Any remaining artifactual com-
ponents may also be identified.

Unwanted-Effects Regressors
These include removal by regression within a GLM of resid-
ual-movement artifacts, low-frequency trends, global intensity
variations (by ANCOVA), and even physiological time series,
all of which have been discussed above. In Figure 2 the step is
half in the shaded data analysis box because it may be com-
bined with a GLM data analysis. It is half out of the shaded
box because a GLM to remove unwanted effects may be run
as an independent preprocessing step before another data
analysis approach is used. This is the approach taken in
Strother et al. [1] where the fMRI data from spatial filtering
undergoes a PCA followed by denoising—dropping 93% of
the principal components—and detrending of the remaining
eigenvector time series in a separate GLM step before apply-
ing a linear discriminant analysis.

Conclusions
With the present technology-focused approach to testing 
individual preprocessing steps, each paper tends to use a dif-
ferent testing environment and performance metrics. This
would be less important if they were all testing exactly the
same combinations of algorithms and software implementa-
tions, but they are not, leaving the generality of the reported
testing results largely unknown. Based on the existing litera-
ture, it is impossible to make conclusive statements about the
optimal algorithms and software implementations for any 
single preprocessing step, let alone entire pipelines. Many
researchers using fMRI implicitly assume, or perhaps hope,
that the exact choices do not matter, but at present that is a
largely untested scientific hypothesis! As outlined in Strother
et al. [1], there is growing evidence from both real data and
simulations that by applying a new processing pipeline to a
raw dataset, significantly modified spatial activation patterns
may be obtained as a result of changing/optimizing prepro-
cessing techniques and/or the data analysis approach.

I believe that the present focus on the technological testing
of preprocessing steps should be balanced by approaches that
test the whole pipeline. This should include all interactions
measured using metrics that are closely linked to the research
and diagnostic questions to be addressed at the end of the
processing pipeline (Figure 1). The goal is to avoid single
expedient or default pipelines by developing a framework
capable of potentially testing thousands of possible pipeline
implementations per dataset. To achieve this goal, we are
depending on recent developments in software tools for man-
aging neuroimaging workflows [143]–[145]. These flexible
frameworks for assembling and testing heterogeneous
pipelines will be used to determine the most important steps,

Many researchers using fMRI implicitly

assume that the exact choices of testing

environment and performance metrics

do not matter.
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algorithms, software implementations, and their parameters
for any given dataset. Here, the pipeline is thought of as a
flexible meta-model, defined by all of the choices and para-
meters involved in the acquisition and reconstruction, prepro-
cessing, and data analysis steps. These meta-model choices
and parameters should be optimized for the task at hand. We
have made a start on such a testing program using the resampling
framework reported in [1], [11], [121], [146], [147]. In addi-
tion to the traditional, technologically-oriented testing of new
algorithms and their associated software tools, I believe that
the functional neuroimaging field should now enter a new
phase of testing in which the optimization of complete, het-
erogeneous processing pipelines is emphasized.
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