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Brain imaging data are generally used to determine
which brain regions are most active in an experimen-
tal paradigm or in a group of subjects. Theoretical
considerations suggest that it would also be of interest
to know which set of brain regions are most interactive
in a given task or group of subjects. A subset of regions
that are much more strongly interactive among them-
selves than with the rest of the brain is called here a
functional cluster. Functional clustering can be as-
sessed by calculating for each subset of brain regions a
measure, the cluster index, obtained by dividing the
statistical dependence within the subset by that be-
tween the subset and rest of the brain. A cluster index
value near 1 indicates a homogeneous system, while a
high cluster index indicates that a subset of brain
regions forms a distinct functional cluster. Within a
functional cluster, individual brain regions are ranked
at the center or at the periphery according to their
statistical dependence with the rest of that cluster. The
applicability of this approach has been tested on PET
data obtained from normal and schizophrenic subjects
performing a set of cognitive tasks. Analysis of the data
reveals evidence of functional clustering. A compara-
tive evaluation of which regions are more peripheral
or more central suggests distinct differences between
the two groups of subjects. We consider the applicabil-
ity of this analysis to data obtained with imaging
modalities offering higher temporal resolution than
PET.
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INTRODUCTION

Neuroimaging provides access to neural substrates of
higher cognitive functions that are difficult to study in
animal models. In most imaging studies, the aim is to
determine whether certain brain regions are signifi-
cantly more or less active than other brain regions by
comparing activity values in different tasks or groups of
subjects (Petersen et al., 1988). Studies of this kind
have provided fundamental data to indicate which
brain regions are strongly activated in cognitive tasks
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or compromised by pathological processes (Budinger,
1992; Heiss et al., 1992). There is evidence, however,
that higher cognitive functions require the rapid inte-
gration of information across several sensory and behav-
ioral domains through reentrant interactions among
widely distributed brain regions (Edelman, 1987, 1989;
Tononi etal., 1992, 1994). This suggests that it would be
important to know which brain regions are most inter-
active in a given task or group of subjects (Mclntosh
and Gonzalez-Lima, 1994; Friston, 1994).

Imaging techniques such as PET and fMRI have only
recently been employed to explore the functional inter-
actions between different brain areas in a given task or
group of subjects (Moeller and Strother, 1987; McLaugh-
lin et al., 1992; Mcintosh et al., 1994, 1996a; Friston,
1994). To characterize the joint interactions among
many brain regions, rather than just the interactions
between two regions at a time, multivariate measures
of statistical dependence have been introduced (Tononi
etal., 1994, 1996; Friston et al., 1996b). A basic question
that needs to be asked of neuroimaging data even
before characterizing the dynamics of neural interac-
tions is whether they show evidence of functional
clustering. Afunctional cluster can be defined as a set of
elements that are much more strongly interactive
among themselves than with the rest of the system,
whether or not the underlying anatomical connectivity
is continuous. The presence of functional clustering
would indicate significant discontinuities in the interac-
tions among brain regions. Such discontinuities could
have important implications particularly because only
signals exchanged within a functional boundary can be
integrated. Their analysis may uncover important as-
pects of cognitive integration in the normal brain
(Mclntosh et al., 1996b), as well as its breakdown in
disorders showing symptoms of functional disconnec-
tion, such as schizophrenia and dissociative disorders
(Edelman, 1989; Friston and Frith, 1995).

To address the issue of functional clustering explic-
itly, the present article introduces a measure, the
cluster index, which relates the statistical dependence
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within a subset of brain regions to that between that
subset and the rest of the brain. A cluster index value
near 1 indicates a system with no discontinuities, while
a high cluster index indicates that a subset of brain
regions forms a distinct cluster having functional bound-
aries with the rest of the brain. The procedures de-
scribed here are aimed at determining whether a
functional cluster is present, its composition, and
whether that composition changes between tasks or
subjects. Following a theoretical analysis, the applica-
bility of these procedures is tested on a PET data set
obtained from normal and schizophrenic subjects per-
forming a set of cognitive tasks.

THEORY

In cluster analysis, a cluster is loosely defined as a
subset of elements that are cohesive among themselves
but relatively isolated from the remaining elements (cf.
Cormack, 1971; Gordon, 1980; Everitt, 1993). In terms
of brain dynamics, a functional cluster can be defined
as a subset of neural elements that are strongly interac-
tive among themselves but weakly interactive with the
rest of the system. This intuitive notion can be made
precise and can be applied to imaging data by using
multivariate measures of statistical dependence among
neural elements. Two such measures, reviewed below,
are integration (Tononi et al., 1994) and mutual informa-
tion (Papoulis, 1991): Integration measures the total
statistical dependence among a subset of elements,
while mutual information measures the statistical de-
pendence between that subset of elements and the rest
of the system. The ratio between integration and
mutual information, or the cluster index, can thus serve
as a measure of functional clustering. By calculating
and ranking cluster indices for a large sample of
subsets of a given system, it is possible to establish the
presence of functional clusters, to determine cluster
boundaries, to reveal the elements included in each
cluster, and to obtain the ranking of elements by their
mutual information within a cluster.

Mutual Information and Integration

Consider a neural system X composed of a set of N
neural elements {x;; whose physiological activation is
reflected by the activity value of a set of N voxels in an
imaging data set. We assume that the activity of these
elements is described by a stationary multidimensional
stochastic process (Papoulis, 1991). The joint probabil-
ity density function describing such a multivariate
process can be characterized in terms of entropy
and mutual information (Shannon and Weaver, 1949;
Papoulis, 1991). Entropy and mutual information are
used here purely in their statistical connotation; they
can be thought of as the multivariate generalizations of
variance and covariance in univariate statistics.
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In the context of neuroimaging data comprising N
voxels and M scans, entropy, integration, and mutual
information can be visualized by thinking of the volume
occupied by M points in an N-dimensional space, of
which entropy provides a measure. If the N voxels are
independent, the M points occupy a large volume in the
N-dimensional space, and entropy is high. If there are
constraints that enforce statistical dependencies among
the voxels, the M points occupy a smaller volume.
Integration measures such reduction in volume or
entropy.

Consider a bipartition of the system X into a jth
subset X}ﬁ composed of k elements, and its complement
X = XJ'-‘. If we indicate the entropy of the jth subset as
H(X}), the mutual information (MI) between X and
X — Xis (Papoulis, 1991)

MI(XS X = X = HXE) + HX = X = H(X). (1)

The mutual information is zero if X and X — XK are
statistically independent; it is greater than zero other-
wise.

The concept of mutual information can be general-
ized to express the deviation from independence among
the N components of a system X by means of a single
measure, which we have called integration, 1(X) (Tononi
et al., 1994). I(X) is defined as the difference between
the sum of the entropies of all individual components
[xi} considered independently and the entropy of X
considered as a whole:

N
1(X) = E H(x) — H(X). )

Thus, the integration 1(X) represents a multivariate
measure of the total amount of deviation from statisti-
cal independence within the system. Assuming that the
system is isolated, or that the amount of correlated
input it receives from outside is constant, the integra-
tion represents a measure of the total amount of
interaction within the system. Note that 1(X) is equal to
the sum of values of the mutual information between
parts resulting from the recursive bipartition of X
down to its elementary components. In particular, by
eliminating one component at a time, 1(X) =3
MI(X;; [Xi41s Xit2, -+« Xn])-

Cluster Index

A “functional cluster” is a set of elements that are
much more strongly interactive among themselves
than with the rest of the system. To identify subsets of
elements satisfying this requirement, a cluster index
(CI) is defined for each subset i according to

CI(XE) = 10K9/MI(XE X — X5, 3)
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Thus, a cluster index near 1 indicates a subset of
elements that are as interactive among themselves as
with the rest of the system. A cluster index much higher
than 1 indicates instead a subset of elements that are
strongly interactive among themselves but weakly
interacting with the rest of the system, i.e., a set of
elements that corresponds to the notion of a functional
cluster. Finally, a cluster index smaller than 1 indicates
a subset of elements that are less interactive among
themselves than with the rest of the system. It should
be emphasized that the use of integration and mutual
information as measures of statistical dependence,
respectively inside and outside the cluster, has the
virtue that both measures are multivariate and are
sensitive to high-order moments of statistical depen-
dence (Papoulis, 1991). A simple demonstration of the
power of a cluster index thus defined is given in
Appendix 1.

Itis often assumed that, as is the case with PET data,
the probability density function of X conforms to a
multidimensional Gaussian. In that case, the system
can be completely characterized by its covariance ma-
trix (Jones, 1979), which is the N X N symmetric
matrix of covariances between all pairs of elements,
COV(X). The ith diagonal element of COV(X) is the
variance of the ith element x;, namely o?. Under these
assumptions, the entropy of x;, H(X;), is given by
H(x;) = (1/2) In(2meo?), and the entropy of X is H(X) =
(1/2) In[(2me)N|COV(X)|], where || is the determinant.
In this context, integration reduces to I1(X) = —0.5
In|CORR(X)|, where CORR(X) is the cross-correlation
(normalized covariance) matrix of X.!

Note that, while the assumption of a multidimen-
sional Gaussian probability density function simplifies
the computation of entropy, integration, and mutual
information, any nonlinear dependencies are dis-
counted. Although the general formulation of a cluster
index presented here is in principle sensitive to devia-
tions from independence of any order, for the purpose of
this paper only first order correlations will play a role.

One of the properties sought from the cluster index
was the ability to make meaningful comparisons be-
tween different subsets, independent of subset size.
The scaling of the integration and mutual information
with subset size is not the same, however, even in the
absence of functional clustering (see Fig. 1). In order to
obtain a CIl that was insensitive to subset size, the
integration and mutual information were normalized
by their respective averages as a function of subset size
in an equivalent nonclustered, or homogeneous, system
Xt CIXE) = 1,(X/MI, (X X — XX); where 1,(XK) =

1 In the context of canonical correlation analysis, mutual informa-
tion between X¥ and X — X¥ can be shown to correspond to MI(X¥; X —
XKy = 3K, (1 — r?), where r; is the ith canonical correlation between
X< and X — XX, The latter correspondence was pointed out by an
anonymous reviewer.
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FOXYI (XE)), MIL(XE X — XE) = MI(XE X — XKU(MIKE;
X — X¥)). Xy is a system the probability distribution
function of which is also a multidimensional Gaussian
of the same size N and total integration 1(X), but one
that has a homogeneous correlation matrix (all pair-
wise correlations equal) and hence that is characterized
by no functional clustering (see Appendix 2). To obtain
the average integration (1(X¥,)) and mutual information
(MI(X}; X — XK)) at each subset size k, many such
systems were sampled and analyzed (see Appendix 2).
The average mutual information and integration as a
function of subset size of one of the PET data sets
discussed below, as well as of the equivalent homoge-
neous system, are shown in Fig. 1.

In order to assess the statistical significance of a
given cluster index, a Student’s t parameter, tc,, was
calculated by subtracting from each CI the mean value
of the same null system used to provide normalization
values and dividing by the standard deviation of this
null population. It was found in null systems X, that
the mean cluster index was one for all subset sizes
(hence permitting comparisons between cluster indices
drawn from different subset sizes), but that the stan-
dard deviation of the distribution varied with subset
size (see Fig. 2). In order to compensate for this, the tg,
was calculated using the mean and standard deviations
by subset size in the null population (see Appendix 2 for
details). This statistic can be calculated for a specified
number of null systems and used to provide the probabil-
ity of obtaining a given data tc, under the null hypoth-
esis, thus providing a rigorous statistical interpretation
to cluster index measurements.
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FIG. 1. Mean values of integration and mutual information as a

function of subset size for two different systems. The symbols indicate
the average integration (circles) and mutual information values
(squares) of a PET imaging data set (shown in Fig. 5A); the average
integration (solid line) and mutual information values (dashed line)
of an equivalent homogeneous system are shown for comparison. The
latter are used as the normalization values in the CI calculation of
the given PET-data system.
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FI1G. 2. Clusterindex analysis for a simulated homogeneous system. The system was drawn from an 11-dimensional Gaussian distribution
of average correlation coefficient 0.32 between all pairs of elements (regions). (A) The correlation matrix resulting from one such sampling. (B)
The 40 highest cluster index values, indicated by open circles. (C) Subset matrix. Schematic representation of the composition of the subsets
corresponding to the Cl values in (B). White indicates that an element is part of the subset; black means that it is not. (D) Histogram of CI
values of 100 systems drawn from same distribution as was A; Cl distributions are shown separately for subset sizes 2, 4, 6, 8, and 10.

Cluster Index Analysis

To demonstrate the properties of the cluster index,
two different systems composed of N = 11 elements
were generated, both of which consisted of 1000 samples
drawn from an 1ll-dimensional Gaussian probability
distribution function (see Appendix 2). The covariance
matrix characterizing the probability distribution func-
tion for the first system was homogeneous, with an
average correlation coefficient of 0.32 between all pairs
of elements. Figure 2A shows the sampled correlation
matrix, which is flat except for statistical fluctuations.
This corresponds to a homogeneous system, in which
there are no boundaries among the 11 elements. In the
second system, the average covariance values de-
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creased linearly from a maximum at element 1 to zero
at elements 7 to 11. Hence elements 1-6 formed a
distinct cluster having a functional boundary with the
other elements (Fig. 3A).

The main outcome derivable from cluster index analy-
sis is a list of the subsets of a system ranked by their ClI
values. The highest ClI values for all the subsets of the
homogeneous system, ranked in ascending order regard-
less of their subset size k, are shown in Fig. 2B. The
composition of the subsets corresponding to each CI is
schematically represented in Fig. 2C. CI values close to
1 indicate that this system does not contain a cluster
boundary; i.e., it is homogeneous. Figure 2D displays
the distribution of the CI values resulting from 100
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FIG. 3. Cluster index analysis for a simulated system containing a functional cluster. The system was drawn form a Gaussian distribution
with elements 1-6 forming a cluster with correlation decreasing linearly from element 1 to element 6. (A) Sampled correlation matrix. (B) 40
most significant subsets ranked by value of t¢,., indicated by the plus sign (scale on the upper abscissa). This is a Student’s t-like parameter, t¢,,
which expresses a given CI in terms of the number of standard deviations that it lies from the mean of subset size k of the equivalent
homogeneous system. Cl values are indicated by the adjacent asterisks (scale on the lower abscissa). The asterisk indicates that in Monte
Carlo simulations of the equivalent homogeneous system subsets of the same size yielded CI values that were equal or higher with P < 0.001.
(C) Corresponding subset compositions. Elements 1 to 6 constitute a functional cluster with Cl = 47. (D) CI histograms of subset sizes 2, 4, 6, 8,

and 10 drawn from 100 sampled systems.
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systems sampled from the same distribution as was
Fig. 2A. The CI distribution has been separately histo-
grammed by subset size for k = 2, 4, 6, 8, and 10. Notice
that the distributions are all centered around ClI = 1
due to the normalization of Cl across subset sizes. The
absolute significance of a given CI value can be estab-
lished by assessing the probability of finding subsets of
the same size with equal or higher CI values in Monte
Carlo simulations of equivalent homogeneous systems
(see Appendix 2). If the highest CI values for the system
under consideration are higher than those expected in
a significant number of corresponding homogeneous
systems (P < 0.01), it is likely that the system contains
one or more functional clusters.

This procedure is illustrated for the system shown in
Fig. 3A, that was designed to contain a functional
cluster. Figure 3B shows the most significant Cls
ranked according to their tg, values, which are also
plotted. The most relevant information is contained at
the top of the matrix, which identifies the subsets with
the highest CI values. Figure 3C shows the correspond-
ing subsets, and Fig. 3D contains the CI distribution
histograms of 100 systems, as in Fig. 2D. The most
significant subset in Fig. 3B has a Cl value of 47 and, as
shown by Fig. 3C, it consists of elements 1-6, the
elements with nonzero average correlation. The 20 next
most significant subsets all consist of elements 1-6
with various additions from the remaining elements
7-11, indicating that the second system contains a
cluster with distinct boundaries. Note that cluster
boundaries can be organized hierarchically, in that
small, tight functional clusters can be found within a
large cluster. In other instances, there may be two or
more distinct clusters, which can be overlapping or not.
In general, it is possible to span a continuum between a
cluster with sharp boundaries and a completely homo-
geneous system.

Practically, the procedure just described can be ap-
plied exhaustively only to systems composed of at most
one or two dozen elements because the number of
subsets to be considered increases as 2N~ — 1. When
dealing with larger systems, a random sampling of
subsets at each level (e.g., 10,000 samples per level)
provides an initial, nonexhaustive cluster matrix. An
optimization for Cl can then be performed by appropri-
ately permuting the subsets with the highest CI (cf.
Everitt, 1993, for optimization procedures in cluster
analysis). In most cases, this procedure rapidly identi-
fies the subsets with the highest ClI among millions of
possibilities. Alternatively, or if the data are noisy, it is
possible to treat the cluster matrix statistically. The
subsets having significant Cl values can be cross-
correlated, weighted by their CI. The eigenvector of this
correlation matrix having the largest eigenvalue will
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indicate a grouping of units that is likely to represent
the composition of a functional cluster (data not shown).

Ranking the Elements within a Functional Cluster

The values of Cl only indicate whether or not there
are cluster boundaries within the system under consid-
eration. In the absence of a boundary, two possibilities
need to be considered. If the system under consider-
ation has a high value of integration 1 (X), it may be part
of a larger functional cluster. Its boundaries can then be
revealed by applying the present analysis to a larger
collection of elements. If instead the system under
consideration has a low value of 1(X), it is too loosely
coupled for functional clustering to emerge. Within the
boundaries of a given functional cluster, a simple
one-dimensional ranking of the individual elements
can be obtained by considering the MI of each element
with the rest of the cluster. Elements with a higher
value of MI can be considered to lie at the center of the
cluster, while elements with lower values of Ml can be
considered to lie at its periphery. The identified cluster
boundaries and the one-dimensional ranking of ele-
ments within a cluster can then be used to reorder rows
and columns of the covariance matrix to reveal its
structure. For the system with cluster boundaries,
within the functional cluster containing elements 1 to
6, the ranking by Ml values identifies a center (element
1) and a periphery (elements 5-6, Fig. 4).

Once the presence and composition of a functional
cluster have been established, several multivariate
approaches can be considered to characterize further the
nature of the interactions within the functional cluster.
Among such approaches are principal component analy-
sis (Moeller et al., 1987; Friston, 1994), multidimensional
scaling (Goldberg et al., 1989; Friston et al., 1996a),
path analysis (Mclntosh and Gonzalez-Lima, 1994),
and the calculation of the complexity, or integration of
information, within the cluster (Tononi et al., 1994).

PET DATA SET

The procedure for identifying and characterizing
functional clusters introduced here was tested on sev-
eral simulated data sets of known structure (multiple
clusters, fuzzy boundaries, subclusters linked by bridg-
ing elements, etc.). In all these cases, the procedure was
able to detect functional clusters in a way that con-
formed with the known structure as well as with
intuition (data not shown). The potential usefulness of
this approach lies, however, in applying it to imaging
data having an unknown structure.

As an example, we have analyzed the results of a
PET study with chronic schizophrenics (N = 8; average
age = 37) and age- and sex-matched controls (N = 8;
average age = 36) performing three simple cognitive
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FIG. 4. Rankings of the elements for the simulated system containing a functional cluster. The elements are ranked based on their mutual
information with the functional cluster to which they belong. The vertical line indicates the border of the functional cluster identified by the
cluster index analysis shown in Fig. 3B (corresponding to the subset at the top of the matrix in Fig. 3C).

tasks. This data set was chosen because no differences
between schizophrenics and controls had been found
when solely analyzing activity measures by statistical
parametric mapping (SPM; Friston et al., 1995b; unpub-
lished results). The schizophrenic patients had been
diagnosed according to DSM-IV criteria and were all
medicated and stable.

The three tasks were as follows. In the first condition,
subjects presented with an arrow on a video screen
were asked to press a button on a computer mouse that
was on the same side as that to which the arrow pointed
(Arrow task). The second condition consisted of presen-
tations of single words (nouns), and the task was to
indicate, by pressing the mouse button, whether the
word contained the letter “a” (Letter task). Words were
also presented in the final condition, but the subjects
were asked to judge whether the word represented a
living or nonliving thing (Living task). The first condi-
tion was scanned once, conditions two and three were
scanned twice.

Images were acquired over 1 min using a fast dy-
namic 0 technique with a GE Medical Systems
2048-15 scanner. Raw PET images were corrected for
interscan movement using a rigid body transformation
and then registered to a common stereotaxic template
image using a 12 parameter affine transformation
followed by a nonlinear 2-D transformation using basis
functions (SPM95, Friston et al., 1995a). Voxel values
within a scan were ratio-adjusted using the mean of
that scan for each subject. Since the correlations used
in the analysis of functional clustering were computed
across all scans, the voxels were further adjusted by
subtracting from each voxel value the mean of that
voxel within subject. This expresses the voxel value as
the deviation from that subject’'s grand mean, i.e., task
variation, and eliminates constant individual differ-
ences that would obscure the covariance structure.
Voxel-by-voxel comparisons were conducted to identify
task-related main effects that were common to both

groups as well as task effects that differed between
groups (group-by-task interactions). There were no
voxels that showed a significant group-by-task interac-
tion.

A set of 25 voxels was then chosen based on peak
task-related differences identified in the SPM analysis
(Table 1). Thirteen voxels showed differences between
the Arrow task and the other two conditions, 6 showing
greater regional cerebral blood flow (rCBF) and 7
showing lower rCBF in the Arrow task. The remaining
12 voxels showed differential rCBF between the Letter
and the Living tasks, half showing greater rCBF and
half showing lower rCBF during the Living task rela-
tive to the Letter task. For each group of subjects, a
covariance matrix was obtained for these voxels using
the 8 subjects X 5 scans as the source of variance (note
that the analysis of this data set can be applied only to
subsets of =35 pixels because of the limited number of
degrees of freedom, i.e., 40 different values for each
voxel, minus the 5 mean corrections).

A second set of voxels was chosen using a voxel-of-
interest (VOI) template that sampled voxels based on
the stereotaxic template. After resampling and stereo-
taxic normalization, the voxel dimensions were 2 X 2 X
4 mm. VOIs were placed such that there was minimal
influence from spatial autocorrelation induced by im-
age smoothing (estimated size of the spatial autocorre-
lation function was about 6 mm in plane for this data
set). From the resulting 270 voxels we chose a set of 11
that could potentially yield a high CI. Six voxels were
chosen from a region extending from left inferior pari-
etal to superior temporal into middle prefrontal cortex,
2 from right dorsal occipital cortex, 2 from right inferior
prefrontal cortex, and 1 from striate cortex. It should be
noted that the choice of this second set of voxels is
meant only as a demonstration of functional clustering
using empirical data and the significance of the analy-
sis does not extend beyond that purpose.
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TABLE 1

Local Maxima for Regions Showing Task-Related Changes
in rCBF Common to Both Controls and Schizophrenics as
Identified by SPM (P < 0.001 uncorrected)

Areas X Y z Task differences
Ra241 22 24 16 Letter > Living

Ral8; 38 —60 -8 Letter > Living

Lal8; —42 —86 0 Letter > Living

Lalod —22 -60 36 Letter > Living

Ra6 22 -10 40 Letter > Living

Ral9d 24 —-62 32 Letter > Living

La47 —28 22 0 Living > Letter

Ra22; —-52 —42 4 Living > Letter

Ra22, —58 -4 -4 Living > Letter

Lal8, —42 —60 -8 Letter > Living

La22, —54 -30 -4 Living > Letter

Ra46 30 45 0 Living > Letter

Ral8, 42 —60 8 Arrow > Letter + Living
Ra2l 44 -4 -4 Arrow > Letter + Living
Ra24m 6 44 0 Arrow > Letter + Living
Ra45 40 38 8 Arrow > Letter + Living
La21 —40 —10 —4 Arrow > Letter + Living
La22; —-60 —60 4 Arrow > Letter + Living
Ra40 54 -30 24 Arrow > Letter + Living
La32 -14 18 40 Letter + Living > Arrow
Lal7v -8 —102 —-12 Letter + Living > Arrow
Ral7v 10 -82 -4 Letter + Living > Arrow
La6 —38 -4 32 Letter + Living > Arrow
Lad4 —56 8 28 Letter + Living > Arrow
La9 -52 22 24 Letter + Living > Arrow

Note. Coordinates and area labels are in reference to the stereo-
taxic atlas of Talairach and Tourneaux (1988) (1, lateral; m, medial; d,
dorsal; v, ventral; R, right; L, left. The rightmost column indicates the
tasks for which the rCBF in that location was different (see text for
task description).

Cluster Index Analysis

The cluster index analysis for the first set of 25 voxels
of the controls is shown in Fig. 5A, and that for the
second set of 11 voxels is shown in Fig. 5B. In Fig. 5A,
low CI values indicate that there are no subsets form-
ing a functional cluster. Since the voxels were chosen
depending on their contribution to the tasks at hand,
and given the limited number of voxels analyzed, this
result suggests that all 25 voxels are strongly interact-
ing among themselves, as further evidenced by the high
value of their average correlation coefficient (absolute
value 0.32). In other words, they are all part of the same
functional cluster, which presumably includes many
more elements. In Fig. 5B, by contrast, it appears that
for the second set of voxels there is a clear-cut cluster
boundary between the voxels sampled from the left
hemisphere and those sampled from the other regions.
In this case, it appears that these two subsets of brain
regions are functionally disconnected, as might be
anticipated given the selection of voxels.

The cluster index analyses for the first and second set
of voxels of the schizophrenics group are shown in Figs.
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6A and 6B, respectively. Neither of the voxel sets show
a clear boundary indicative of functional clustering.
The absence of a cluster boundary in the second data
set of schizophrenics can be attributed to the presence
of small but stable covariances between the left hemi-
sphere voxels and the other five voxels. In the first set
of voxels, there is no major difference in terms of cluster
boundaries between controls and schizophrenics. As
shown below, however, the ranking of the elements
within each cluster differs between the two groups.

Assessing Differences in Within-Cluster Ranking

The location of the set of voxels selected through SPM
analysis is shown in Fig. 7. The voxels are color-coded
according to the strength of their statistical depen-
dence, i.e., their Ml values, with the rest of the cluster
for controls (Fig. 7A) and schizophrenics (Fig. 7B). The
ranked MI values between each voxel and the rest of
the cluster are shown in Fig. 8A for controls and in Fig.
8B for schizophrenics.

The two rankings can be compared through an
equivalent of an image subtraction procedure. The Ml
values obtained for the schizophrenics were subtracted
from those obtained for the controls on a region-by-
region basis. This produces a diagram (Fig. 8C) which
displays the positive or negative difference in Ml
between the two groups for each brain region within
the functional cluster. For five areas this difference
achieved statistical significance as assessed by a ran-
dom permutation test (Edgington, 1980). The permuta-
tion test assesses the degree to which the observed
differences in MI are due to the group assignment for
each subject’'s data. The data were randomly reas-
signed 500 times to each group, the MI computed with
the new assignment, and at each permutation the
difference in MI was assessed for each voxel. Left
premotor area 6 (P = 0.006), right dorsal area 19
(P = 0.055), left area 18 (P = 0.06), and right area 40
(P = 0.034) had higher Ml values for controls, while left
area 44 (P = 0.074) had a higher value of MI for
schizophrenics. Additional statistical rigor could be
obtained by correcting the chosen statistical threshold
for multiple comparisons based on the number of
elements within the cluster that are assessed for
differences in MI ranking. Using the overly conserva-
tive Bonferroni correction, premotor area 6 would
remain significant. Thus, in contrast to activation
values, the functional interactions within the cluster of
brain areas involved in the cognitive tasks evaluated in
this study differ significantly between controls and
schizophrenics.

DISCUSSION

We have described a procedure for determining
whether imaging data reveal evidence of functional
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FIG.5. Cluster index analysis for a PET data set from control subjects performing a set of cognitive tasks. (A) Activity values for 25 voxels
chosen on the basis of peak task-related differences as determined by SPM analysis. (Left) Covariance matrix, (middle) highest cluster index
values ranked by value of t¢,, (right) corresponding subsets. Cl values are indicated by open circles or by a star if they reached significance in
Monte Carlo simulations. tc, values are indicated by the plus sign. Note that no Cl value reached significance, suggesting that all voxels are
part of the same functional cluster. (B) Activity values for 11 voxels chosen to illustrate cluster boundaries. Voxels 1-6 were selected from a
region extending from left inferior parietal to superior temporal into middle prefrontal cortex, voxels 7-8 from right dorsal occipital cortex,
voxels 9-10 from right inferior prefrontal cortex, and voxel 11 from striate cortex. As is evident also from the reordered covariance matrix, the
highest CI values reached significance, suggesting that voxels 7 to 11 and 1 to 6 are part of two separate functional clusters.

clustering, i.e., evidence that certain subsets of brain
regions interact much more strongly among themselves
than with the rest of the brain. The procedure allows
the establishment of the presence, composition, and
boundaries of one or more functional clusters in a given
task or group of subjects. It also permits ranking of
brain regions within a cluster in terms of the strength
of their statistical dependence. After demonstrating the
procedure with synthetic models, a data set obtained in
a PET study of schizophrenic patients was analyzed as
an example. In what follows, we discuss the rationale
for introducing such a procedure and we examine its
relationships to other methods of data clustering. Fi-
nally, we briefly consider the results of the analysis of
the PET data set.

Functional Clustering: A Preliminary Step in
the Analysis of Neural Interactions

While many kinds of multivariate analyses can be
applied to imaging data in order to characterize neural
interactions, we propose here that an important first

step should be the evaluation of functional clustering in
the data. Such evaluation can aid in selecting, from the
large set of voxels in imaging data sets, subsets of brain
regions that stand out in terms of the strength of their
interactivity, much as traditional approaches are used
to select brain regions that stand out in terms of their
activity.

Several considerations suggest that, in both physi-
ological and pathological conditions, subsets of brain
regions may transiently interact much more strongly
among themselves than with the rest of the brain. This
would lead to the emergence of functional boundaries
despite the widespread connectivity that links all brain
regions (Tononi and Edelman, in press). For instance,
the presence of such functional boundaries is indicated
by several manifestations of neurological disconnection
syndromes (Geschwind, 1965), as well as by psychiatric
conditions such as schizophrenia (Bleuler, 1911) and
dissociative disorders (Lynn and Rhue, 1994). In the
normal brain, while many brain regions are active in
the control of cognition and behavior, only a subset of
active neuronal groups is directly correlated with con-
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FIG. 6. Cluster index analysis for a PET data set from schizophrenic subjects performing a set of cognitive tasks. (A) Activity values for 25
voxels chosen on the basis of peak task-related differences as determined by SPM analysis. (B) Activity values for 11 voxels chosen to illustrate
cluster boundaries. Panels as in Fig. 5. Note that no Cl value reached significance.

scious experience (e.g., Leopold and Logothetis, 1996;
Tononi et al., in press). This suggests that, above and
beyond the activity levels of such neuronal groups,
critical differences with respect to stimulus awareness
may be the strength, duration, and stability of their
interactions within a distributed functional cluster
(Tononi and Edelman, in press). The rapid and stable
integration within a single functional entity of informa-
tion obtained from many different sources, which is
achieved by processes of reentry, is a central aspect of
our cognitive abilities (Edelman, 1987; Tononi et al.,
1992). Signals integrated within a functional cluster
are rapidly distributed to all its composing subsets and
can thus simultaneously influence many aspects of
brain function (Tononi et al., 1992, 1994, 1996). Signals
that are not integrated within a functional cluster are
not globally distributed and can influence brain func-
tion only in a local and indirect manner. Finding
experimental evidence for functional clustering in the
brain would obviously have significant implications for
our understanding of brain function.

From a practical point of view, several descriptive
statistical techniques can be used to find evidence of
functional clustering in imaging data in an expedient
way. For instance, both principal component analysis
(PCA), factor analysis (FA), independent component

analysis (ICA), and multidimensional scaling (MDS)
can be used to facilitate the identification of clusters in
data (Moeller et al., 1987; Golderg et al., 1989; McLaugh-
lin, et al., 1992; Friston, 1994; McKeown et al., 1997).
However, it is well known that while PCA and related
approaches may be useful in identifying important
relationships within the data, there is no guarantee
that PCA can find the clusters in multidimensional
space that correspond to the intuitive notion of a
cluster. In fact, PCA is not necessarily the better way
for displaying the separation between groups or tasks,
and it is not designed to search for structure but rather
to summarize a large number of dimensions (Chang,
1983; Sneath, 1980; Widaman, 1993). Inasmuch as
metric MDS is closely related to PCA (Cox and Cox,
1994), the same considerations apply to the former
procedure. Both procedures can be profitably employed,
as suggested earlier, in a preliminary analysis of the
data to provide a good starting point for optimization.
The approach presented here aims at determining
functional clustering directly by defining a cluster in
terms of intrinsic vs extrinsic statistical dependencies
and by examining a large number of candidate subsets
in a data set. Although no universally accepted defini-
tion of a cluster exists in the statistical literature
(Everitt, 1993; Arabie et al., 1996), it is generally
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FIG. 7. Image of the set of 25 voxels identified by SPM analysis weighted by their mutual information within the functional cluster. Voxels
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FIG. 8. Rankings of the 25 voxels identified by SPM analysis based on their mutual information within the functional cluster. (A) Controls,
(B) schizophrenics. Voxels are ordered according to their mutual information with the rest of the system with labels as indicated in Table 1. (C)
Difference in MI between controls and schizophrenics on a region-by-region basis. The difference is indicated by solid bars and voxel ordering is
that of the control group. Shaded bars are voxels where the difference in M1 was statistically significant as assessed through permutation tests
assignment (see text for full explanation of this test). Bars shaded black are significant at P < 0.01 and those shaded gray are significantat P <

0.1. Area abbreviations on the X axis are the same as in Table 1.

agreed that a cluster should be defined in terms of
internal cohesion and external isolation (cf. Cormack,
1971; Gordon, 1980). The cluster index developed here
is based on integration as a measure of intrinsic
statistical dependency within a subset of elements
(internal cohesion) and on mutual information between
that subset and its complement as a measure of extrin-
sic statistical dependency (external isolation). As a
measure of similarity for clustering, mutual informa-

tion (with its derivatives) has the advantages of being
multivariate, of being directly related to functional
interactions, and of being sensitive to linear as well as
nonlinear interactions. The enumerative procedure used
here for the determination of functional clustering in a
data set is related to various approaches in the context
of cluster analysis, especially to the divisive enumera-
tive procedure described by Chandon and Pinson (1981,
cf. Kaufman and Rousseeuw, 1990). Although computa-

voxels are placed on a single structural MRI that conforms to the standard atlas space (left is left in the images). Mislocation of certain voxels
to white matter represents an artifact of registering the low resolution PET coordinates onto the higher resolution MR. Slices proceed from

ventral to dorsal going left to right columns and top to bottom rows (planes are located at Z coordinates: —12,

40 with reference to the Talaraich and Tourneaux atlas).

—8,—-4,0,4,8, 16, 24, 28, 32, 36,
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tionally expensive, an enumerative procedure is theo-
retically a satisfactory way of establishing the presence
of clustering without bias. Depending on the specific
application, faster clustering procedures can also be
considered (Everitt, 1993).

Application to Functional Neuroimaging

The PET data set considered here was not collected
for the purpose of examining functional clustering and
it is therefore to be expected that it presents several
limitations. Perhaps the most important restriction is
the limited number of degrees of freedom available due
to the limited number of PET scans and subjects. This
constrained the analysis of functional clustering to
subsets of <35 voxels. Another limitation is the source
of variance in this study, which was variance among
subjects and conditions as opposed to variance within a
subject and within a task. The latter variance reflects
how brain regions exchange signals in real time, but its
calculation requires much higher temporal resolution.
A useful feature of PET data is that, partly because of
postacquisition processing, to a large degree they con-
form to multidimensional Gaussian assumptions. This
makes the determination of Cl values computationally
convenient, but it does not exploit the power of mea-
sures such as integration and mutual information to
detect nonlinear interactions. Finally, it should be kept
in mind that the present analysis of functional cluster-
ing can explore only the statistical dependencies among
brain regions. Distinguishing between statistical depen-
dence and causal interaction requires additional as-
sumptions or experimental manipulations.

Despite these limitations, the present analysis al-
lowed us to draw some encouraging conclusions. In
some cases, the limited number of brain regions consid-
ered here were shown to be part of the same functional
cluster. These brain regions were selected because they
showed significant task-related activity changes, and it
is probably safe to assume that they may be part of a
larger functional cluster. In other cases, it was possible
to find evidence of a functional boundary, with certain
sets of voxels belonging to one functional cluster and
another set to a different cluster. In both instances, the
present findings lend themselves to a physiologically
meaningful interpretation. The voxels belonging to the
same cluster were all functionally involved in the tasks
studied while the voxels belonging to separate clusters
were presumably functionally unrelated. Furthermore,
it is possible to rank the regions belonging to a func-
tional cluster in terms of the strength of their interac-
tion with the rest of the cluster, thus identifying regions
that are more central and others that are more periph-
eral in the many-to-many interactions that constitute a
functional cluster. There can be significant differences
in the ranking of certain brain regions between groups
of subjects, as seen here for schizophrenics and con-
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trols. Finally, boundaries between different functional
clusters, as well as differences in the ranking within a
cluster, can be present despite the absence of any
difference in activation.

An examination of the same data sets with commonly
used clustering methods was also performed, using
both hierarchical and partitioning algorithms (e.g.,
k-means algorithm, with 2 to 5 groups). The compari-
son revealed that clusters identified though the present
procedure were often reflected in the structure of
dendrograms obtained from certain hierarchical algo-
rithms (e.g., single-linkage clustering on Euclidean
distances). However, different structures were obtained
using different linkage methods, and deciding the
appropriateness of one method over the other or testing
for the significance of specific clusters becomes a seri-
ous problem. A partitioning algorithm (k-means, 2 to 5
groups) also found clusters that were broadly consis-
tent with those identified by the present approach. This
is expected given that the use of an integration/mutual
information metric instead of the usual distance mea-
sures becomes less critical under the assumption of a
multidimensional Gaussian distribution. By its own
nature, however, the partitioning algorithm also found
clusters when there were none. While the significance
of the structure extracted by partitioning algorithms
could also be tested against homogeneity or unimodal-
ity, a comparison of different clustering methods was
not the purpose of the present paper. The topic of
probability models and hypothesis testing in partition-
ing clustering analysis is analyzed in detail in Bock
(1996).

The use of experimental protocols aimed at probing
the presence and extent of functional clustering in the
working brain, together with imaging methodologies
offering higher temporal resolution, such as fMRI and
topographic EEG and MEG, should overcome many of
the technical limitations inherent in the present data
set. Calculation of CI values and the accompanying
descriptors could complement activation analyses such
as SPM by sorting activated and deactivated regions
into meaningful functional clusters. A procedure simi-
lar to the one employed here for group-related differ-
ences would be useful in the analysis of task-related
differences in the organization of functional clusters.
This would aid in determining whether a change in
activity of particular regions between tasks is due to a
reordering of areas within a cluster, or to a shift to an
entirely different functional cluster. In addition, the
use of faster imaging methodologies should make it
possible to evaluate the dynamic occurrence and signifi-
cance of functional clustering in the brain of individual
subjects performing a cognitive task, thus providing a
starting point for investigating the underlying neural
mechanisms. As briefly discussed in the next section,
some of these mechanisms, both structural and dy-
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namic, can already be inferred or postulated on the
basis of phenomenological observations as well as of
large-scale computer simulations.

Possible Structural and Functional
Determinants of Clustering

Since neurons must be active in order to be interac-
tive, a functional cluster will in general be constituted
by brain regions that are active. Any pathological
change in activity is thus expected to affect the composi-
tion and strength of a functional cluster. In many cases,
however, neural activity and interactivity can be disso-
ciated. This could be due to structural factors. The
organization of the anatomical connectivity of certain
brain regions, for example the reciprocal connectivity
within the thalamocortical system, is well-suited to
generating coherent dynamical states (Lumer et al.,
1997a,b), while that of other brain regions, for example
the cerebellum, may not be as well suited. Structural
factors could also be responsible for a dissociation
between activity and interactivity in pathological condi-
tions. In split brain patients, the absence of direct, fast
interactions between the two hemispheres impairs the
integration of information between them, although
both hemispheres are normally active and can control
behavior (Gazzaniga, 1995). In cats, the transection of
the corpus callosum impairs the stimulus-induced syn-
chronization of neuronal groups but not their activa-
tion (Engel et al., 1991). A similar dissociation between
activity and synchronization is observed in strabismic
cats (Koenig et al., 1993).

Functional clustering can also arise through purely
functional factors, as shown by large-scale simulations
(Lumer et al., 1997a). Nonlinear interactions among
neuronal groups, such as those mediated by the activa-
tion of voltage-dependent connections, can transiently
increase the strength of the interactions among a
subset of groups, leading to the formation of functional
clusters in the thalamocortical system despite the
relative continuity of anatomical connectivity. In some
cases, active brain regions may form competing clus-
ters through inhibition or desynchronization (Tononi et
al., 1992). Some experimental evidence is available for
the dynamic formation of functional borders in the
visual cortex of the cat. For instance, orthogonal visual
stimuli can result in the transient functional grouping
and regrouping of the activity of multiple groups of
neurons which are alternately correlated or uncorre-
lated with each other (Engel et al., 1990). The extent
and cohesion of functional clustering is also likely to be
modified by the activity of neuromodulatory systems,
which can affect the strength of neuronal interactions
and the likelihood of synchronization (Munk et al.,
1996). Such mechanisms could play a role in schizophre-
nia and dissociative disorders.

Finally, the time scale at which neural interactions
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occur is crucial to the occurrence of functional cluster-
ing. Over a sufficiently long time scale, all elements of
the brain are likely to be functionally connected to some
degree. Over the cognitively crucial time scale of a few
hundred milliseconds (Blumenthal, 1977), however,
only certain brain regions may interact with sufficient
speed and strength as to give rise to a functional
cluster. As shown by large-scale simulations, reentrant
interactions can result in the formation of a cluster of
neuronal groups within the thalamocortical system
that are transiently but sharply differentiated from
surrounding neurons in terms of the strength of their
interactions (Lumer et al., 1997a,b). The simulations
also show that such functional clusters arise as a result
of a phase transition in the dynamic behavior of the
system (Lumer et al., 1997b). Below a well defined
transition threshold, such a functional cluster col-
lapses. These results suggest that reductions in conduc-
tion velocity or in the efficacy of voltage-dependent
connections may precipitate the collapse of functional
clustering and lead to functional disturbances.

CONCLUSIONS

In the present article, a functional cluster has been
defined as a subset of strongly interactive regions that
show distinct boundaries with the rest of the brain. A
measure of functional clustering has been introduced,
and its applicability tested on a PET data set. Several
theoretically relevant questions about the occurrence of
functional clustering in the brain are addressable with
neuroimaging techniques offering higher temporal reso-
lution. Some of these questions are as follows. For any
given task or group of subjects, is there a set of brain
regions that interact much more strongly among them-
selves than with the rest of the brain; i.e., is there a
functional cluster? Does the composition of such a
functional cluster change depending upon which cogni-
tive activity the subject is engaged in? Are certain brain
regions always included or always excluded from such a
functional cluster? Can a functional cluster split, or can
multiple clusters coexist in a normal subject? Are there
pathological conditions that are reflected in abnormali-
ties of functional clustering? While future experiments
will certainly be necessary to address these questions,
the present analysis on a PET data set suggests that, in
principle, the determination of physiological clusters
and of pathological changes in cluster arrangement can
reliably be achieved.

APPENDIX 1: ANALYSIS OF A SAMPLE SYSTEM

For a simple example that demonstrates the proper-
ties of the proposed cluster index, consider a system
consisting of six binary units, {uj}, in which the ith unit
can be in one of two states: u; = 0 or u; = 1. This system
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is such that u,, u,, u,;, and us each randomly occupy
either state with equal probability P = 0.5. The state of
us is given by the exclusive or (XOR) of u; and u,; that
is, U3 = u; XOR u,, and ug = us XOR us. Hence the
system consists by design of two mutually independent
functional clusters of 3 units each. All 16 possible states
of the system are listed in Table 2.

Each state of this system occurs with equal likeli-
hood. Hence the list of states in the table can be taken
as a representative sample of a population of 16 mea-
surements on the system. Notice two properties of the
table. First, units 3 and 6 each occupy the 0 and 1 states
with equal probability despite their functional associa-
tion with two other units each. Second, there is zero
correlation between all pairs of units (rows of the table).
The absence of linear correlations is due to the nonlin-
ear nature of the relation between the units, which is
manifest in the alternative mathematical expression
Us=1-—(u; +u, — 1)2

Any clustering technique based on pairwise correla-
tions as a distance metric would thus detect no func-
tional groupings within this system. Clustering tech-
niques based on grouping the measurements together
in the six-dimensional space defined by the values of
each unit also fail. In fact, standard clustering tech-
niques such as hierarchical agglomerative algorithms
as well as partitioning algorithms (k-means) failed to
detect the structure inherent in this system. For in-
stance, the k-means algorithm (k = 2) produced arbi-
trary bipartitionings determined exclusively by the
ordering of the elements. All of these partitionings were
equivalent, with F = 1.

From the known probability distribution of this
system or an estimation of it from experimental data, it
is possible to calculate the entropies of the system and
its various subsets, and then to calculate the derived
quantities of integration and mutual information. The
entropy of a system with M discreet states with prob-
abilities [p;}is H = —=M, p; log p;. For the binary system
under consideration, it will be convenient to use the
base-2 logarithm. Hence the entropy of a single unit u;
is just H(u;)) = —2:-05:1log, 0.5 = log, 2 = 1. In
general, the entropy of any system consisting of M
states each of equal probability p = 1/M is just log, M.
The entropy of the system consisting of units 1, 2, and 3
is H({uy, u,, ug)) = log, 4 = 2, the same as that of units 4,

TABLE 2
States of the Sample System

Unit1
Unit 2
Unit 3
Unit 4
Unit5
Unit 6

OR R ORE
[N eNeNoN
RPORORR
PR OOk
OrRrPrOOO
coooocoo
rORrROOO
rRrOOOO
ORRROR
CoOoORrROR
RPORROR
PR OROR
ORRRRLRO
oOOoOORrR RO
RPORRRO
PR ORRO
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5, and 6, and the entropy of any other combination of
three units is log, 8 = 3. The entropy of the entire
system is H({u;}) = log, 16 = 4.

The mutual information between two systems (or
subsets of a system) is just the difference between the
summed entropies of the two individual systems and
the entropy of the combined systems considered to-
gether (Eq. (1) in the main text) and reflects the degree
to which the two systems are statistically dependent.
The integration of a system is a generalization of this
measure, defined as the difference between the summed
entropies of all individual elements in the system and
the entropy of the entire system (Eq. (2)). It reflects the
degree to which all elements of the system are statisti-
cally dependent. The cluster index defined in the main
text (Eq. (3)) captures both of these measures for a
particular subset X; via the ratio of its integration to its
mutual information with the remainder of the system:

In order to determine the cluster indices for the
sample system, it is necessary only to consider one
example of each type of subset partitioning having a
distinct probability distribution function. Table 3 lists
each unique subset type. All possible partitionings of
the system are equivalent to one of these (for example,
U,, Uy, Uz also represents uy, Us, Ug). For each subset the
table indicates its integration, its mutual information
with the remainder of the system, and the ratio of these
two quantities, or the cluster index. Cluster indices of 0
simply reflect the fact that certain subsets have zero
integration. A cluster index of 1 indicates the statistical
dependence within a subset is equal in magnitude to its
dependence with respect to the remainder of the sys-
tem. Thus a homogeneous system, in which all units
are interconnected on average with the same strength,
would yield a population of cluster indices around one.
Note that only one subset, u,, u,, and us, equivalent to
U4, Us, and ug, yields a cluster index greater than 1. In
this simplified case the cluster index is infinite; in a
finite sampling of this system, large but finite values
would be obtained on average. Thus the cluster index
accurately identifies the two distinct functional enti-
ties, even in the absence of pairwise correlations.

In general, the calculation of entropy requires the
actual probability distribution of a system or its esti-
mated value from a finite data set. If the data are
continuous, the entropy is given by the N-dimensional
integral H(X) = — /7 p(X) In p(x) dx, where X is the
vector of state values of each of the N units of the
system. If p(x) cannot be adequately measured, a model
distribution which can be fully characterized from a few
measurable parameters is often taken as a reasonable
approximation to the underlying distribution, as is
done in the main text with a multidimensional Gauss-
ian distribution.
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TABLE 3
Subset X; I(Xi) MI(X i X — Xi) CI(X i)
Uy, Uz 0 1 0
Uy, Ug 0 2 0
Uz, Uz, U3 1 0 ®
Uz, Uz, Ug 0 2 0
Uz, Uz, Uz, Uy 1 1 1
Uy, Uz, Ug, Us 0 2 0
Uz, Uz, Uz, Ug, Us 1 1 1

APPENDIX 2: STATISTICS OF THE CLUSTER INDEX

The main text outlines a procedure which utilizes
mutual information and integration to determine the
structure of statistical clustering in a given imaging
data set. To draw meaningful conclusions from this
procedure it is necessary to construct a system against
which to compare the data set. This system should be
chosen to have by definition no statistical clustering
but in all other aspects be as similar to the data set as
possible. This system is required at two stages in the
analysis: first, to provide normalization constants so
that subsets of the system can be compared indepen-
dent of subset size, and second, to provide a valid null
hypothesis against which to compare the findings in the
data set. Such a system is formed by sampling a
multidimensional Gaussian process of homogeneous
covariance. Below is a brief review of multidimensional
Gaussian statistics and a more detailed description of
the statistical procedures outlined in the main text.

Consider a system X described by the M X N matrix
of elements x,;. The matrix consists of M row vectors X,
each of which is drawn from an N-dimensional Gauss-
ian process with probability distribution function p(x),

- aX “1xT
POO = fampc=®

where C is the covariance matrix of the distribution,
and |C|is its determinant. Each of the N columns forms
a column vector Xx;, each of which is a univariate
Gaussian process of zero mean.

The covariance matrix of X is given by COV(X); =
(/M) =M x5 X5 = (X; - X;). The average observed COV/(X)
over many sample systems X will tend toward C, the
covariance characterizing the distribution function.
For a system characterized by multidimensional Gauss-
ian statistics, the entropy is just H(X) = In
\/(Zwe)N\COV(X) , and the integration of X is given by
I1(X) = —0.5 In|CORR(X)|, where CORR(X) is the corre-
lation matrix of X, that is, the matrix the ijth off-
diagonal element of which is the correlation coefficient
between x; and X;.

A system characterizing the null hypothesis of no

147

clustering must be provided in order to gauge the
likelihood of obtaining a given CI if no functional
clustering is present. The equivalent “null system”
employed in this study was chosen to be statistically
homogeneous, i.e., have no statistical clustering, and to
have the same size, average total integration, and
number of samples as the data system being studied.
Such a homogeneous system Xy is sampled from a
multidimensional Gaussian probability distribution
characterized by a homogeneous correlation matrix
C(r), that is, with the same value r on all offdiagonal
elements. This value is uniquely determined by the
above conditions and was found by numerical search.
The average values of integration and mutual informa-
tion from 100 such systems were used to provide the
homogeneous-system integration and mutual informa-
tion values in the normalized cluster index calculation.

The cluster indices of system X, are distributed by
definition around a mean of one for all subset sizes.
However, as noted in the main text, the width of the ClI
distribution differs as a function of subset size. This
skews the distribution of the observed maximum CI
values in favor of large and small subset sizes (k = 2,
N — 1). Since the goal is to rank subsets in a manner
which is independent of subset size, a Student’s t-like
parameter, tc,, was devised: te; = [CI(X¥) — (CI(X))/
std(CI(XK). In this expression CI(XK) is the cluster
index of the ith system of subset size k, (CI(XK)) is the
mean of the cluster-index distribution at subset size k
accumulated from many (here, 100) sampled equiva-
lent homogeneous systems, and std() is the standard
deviation of the distribution. This parameter was found
to remove effectively the asymmetry between subset
sizes and was utilized to provide a relative ranking of
all subsets according to significance of clustering.

In order to test the significance of CI values, null-
hypothesis statistics were generated via Monte Carlo
simulations of the same homogeneous systems Xy as
used to provide the normalization constants. This was
done by generating N independent processes y;, each of
which consisted of a vector of M samples drawn from a
univariate Gaussian process of zero mean and unit
variance. The multidimensional system X, was then
generated via the linear model x; = by; + a3..;jy;, where
a={N—-2r+2-2[(1—-N)r2+ (N—2r + 1]“32/N
and b = [1 — (N — 1)a?]*2. The values b and a were
obtained by solving the equations (x; - X;) = r;, setting
rij = rfori # jand rj = 1fori = j, given the fact that
{yi-yj =0fori=#jand1fori=j. Thisis aspecial case
of the general procedure for generating multivariate
Gaussian deviates of any given correlation matrix
(Rubinstein, 1981). The processes X; will on average
have correlation matrix C(r), i.e., (CORR(Xy )} = C(r).

The CI calculation was performed and the cluster
indices histogrammed for 1000 null systems Xy, in order
to provide a confidence level of P < 0.001 (probability of
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having obtained a cluster index of a given or larger
magnitude from the equivalent homogeneous system).
This provides the equivalent of a Bonferroni correction,
required since the data set Cls were searched for a
maximum, invoking the problem of multiple compari-
sons. The maximum value observed from all such
systems was used as the significance threshold.
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