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event-related potential data with partial least squares

NANCY J. LOBAUGH, ROBERT WESTAND ANTHONY R. McINTOSH

Rotman Research Institute, Baycrest Centre for Geriatric Care and University of Toronto, Canada

Abstract

One challenge in the analysis of event-related potentiBRPS is to identify task-related differences in scalp
topography. The multivariate Partial Least SqudieisS) analysis was used to identify the spatiotemporal distribution

of ERP differences related to experimental manipulations. Two simulations included latency shifts and amplitude
changes at peaks with temporal overlap. PLS identified effects only at modeled timepoints and electrodes. In contrast,
principal components analysis identified differences at most timepoints. We also demonstrated that PLS identified
combinations of waveform differences, not isolated sources. ERP components in an auditory oddball task were also
assessed with PLS. The primary distinction was between ERPs on hit and correct rejection trials, expressed at multiple
timepoints and electrodes. PLS provides a mechanism to describe experimental differences in ERP waveforms,
simultaneously across the head.

Descriptors: Partial least squares, Principal components analysis, Singular value decomposition, Event-related
potentials

Event-related potentidlERP data provide both spatial and tem- post-hoc selection of electrodes and intervals is influenced by the
poral measures of brain activity related to cognitive processingexperimenter’s own biases. The need for more objective statistical
Typically, epochs analyzed include about 100 ms prestimulus acanalysis of these large datasets has prompted the application of a
tivity and 1,000 ms poststimulus, at 30 or more electrode sitesiumber of linear multivariate techniques such as principal com-
across the scalp. These are large, multivariate datasets, generafignents analysisSPCA; Donchin & Heffley, 1978 independent
containing more than 6,000 datapoints per subject in every condieomponents analysidCA; Makeig, Juny, Bell, Ghahremani, &
tion. Until recently, univariate analys€&\NOVA, t testy have  Sejnowski, 1997; Makeig et al., 199%nd spatiotemporal mod-
been most frequently used to extract effects related to experimentaling (STM; Achim & Bouchard, 199y

manipulations from the data. To reduce the impact of multiple One primary assumption made in the application of linear
comparisons, analysis is typically restricted to latencies of particimultivariate analyses to study ERPs is that the scalp recordings
ular interest and a small number of electrode locations. The choiceeflect a linear combination of electrically active sources within
of electrode sites as well as the interval of interest are either basetie brain. PCA has been the most frequently used, and can provide
on a priori hypotheses, or selected after visual inspection of theeparate analysis of the spatial or temporal relations in ERP data.
ERP data. Both approaches have problems and limitations. AnalyMost often, it has been used to examine the underlying temporal
sis restricted to a priori selected intervals Amdelectrodes may patterns elicited by different experimental conditigRscton et al.,
overlook new information present in the dataset. Analysis based 08000. Temporal PCA provides orthogonal vectors, principal com-
ponents(PC), reflecting patterns of scalp amplitudes across the
time interval. The PCA solution is then typically rotat@darimax,
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ences among conditiorigVidaman, 1998 a single PC may reflect ~ Strother, Sidtis, & Rottenberg, 198ut one important feature of
both of these sources of variance. PLS is that we constrain the solutions to the part of the covariance
Typically, the goal of multivariate techniques such as PCA,structure attributable to experimental manipulations. Moreover,
ICA, and STM is ultimately to describe important differences in PLS is ideal for datasets where the measures within a block are
the ERP waveform that are related to the experimental manipulahighly correlated(e.g., scalp potentiglsbecause items within a
tions. We present here the application of a new multivariate toolplock are not adjusted for these correlatidofs, canonical corre-
partial least square€PLS; Wold, 1975, to the analysis of ERP lation). Figure 1 provides a graphical outline of the major steps in
datasets. PLS can be used to describe the relation between one #& PLS analysis, which is described in detail below.
of measures, like the experimental design or behavioral responses,
and a large set of dependent measures, in this case scalp potentials.Data matrix. The data matrix consists of one row of data per
The primary advantage over other multivariate techniques is that isubject, blocked by condition. The spatial and temporal informa-
is designed to identify where, simultaneously in space and timetion is maintained by stringing together the amplitudes at all
the strongest experimental effects are expressed. PLS has betimepoints for each electrode. For example, in a study with 32
used extensively for one-dimensional images from spectrographglectrodes having 200 timepoints at each electrode, each row of
as in chemometrics or remote sensiegy., Heise, Marbach, Jan- data would contain 6400 datapoir{Sigure 1A, righj.
atsch, & Kruse-Jarres, 1989; Hellberg, Sjostrom, & Wold, 1986
Its first application in psychology was an examination of the  Design matrix.PLS examines the relations between the data of
relations between multiple measures of maternal drinking behavioihterest and some exogenous source thought to influence or other-
and offspring outcome in a study on fetal alcohol syndr¢8teeiss-
guth, Bookstein, Sampson, & Barr, 199®LS has recently been
adapted for functional neuroimaging analysis to identify unique
relations betweefa) experimental design and brain activityicin-
tosh, Bookstein, Haxby, & Grady, 1996(b) brain activity and
behavioral responsdé#/cintosh, Lobaugh, Cabeza, Bookstein, &
Houle, 1998, and(c) single brain regions and the rest of the brain  condition 1
(Mclintosh, Rajah, & Lobaugh, 1999
To illustrate the utility of the PLS technique as it is applied to
the full ERP dataset, we first present the results from two simu- Condition 3
lation studies. For these studies, activity in three neural sourcesgondition 4
was combined and projected onto the scalp. The first simulation
demonstrates how PLS identifies experimental effects expressed as
latency shifts at a single neural source. The second simulation was
designed to test the limits of PLS by incorporating multiple effects . .
at simultaneously active sources. Because temporal PCA is th(.B SVD on Covariance Matrix
most frequently used multivariate analysis in the literature, we

A Create Design Matrix and Data Matrix

Condition 2

contrasted the PLS results from this simulation with those from a s\',';f’u‘ﬂi' Electrode +| |
temporal PCA. Finally, to illustrate the relevance of PLS for real Saliences _|—4- -
ERP data, we applied the PLS analysis to an ERP dataset from an Design E1 E2 E3
auditory oddball paradigm. Saliences

To anticipate the results, in all cases, PLS identified stable
differences in the waveforms only at timepoints where they Werec Create Scores
modeled. Where the scalp potentials did not differ across condi-

tions, the PLS results indicated that those timepoints did not +
contribute to the results. Interpretation of the first simulation was Scalp 2 %g
straightforward, as the PLS results mapped onto the topography of Scores % &

H
the manipulated source. The results from the second simulation - *_
demonstrated that PLS identifies only the speafimbinationof

waveform differences that distinguish conditions. In the case where

differences in scalp activity deriving from two simultaneously Figure 1. Steps in the design-brain PLS. A: A matrix containing design
active sources best defined an experimental effect, this combingontrasts and the data matrix are created. The design matrix can be any
tion was revealed on a single dimension. These findings indicaterthonormal set of vectors defining the degrees of freedom in the experi-
that PLS is a sensitive tool for detecting the spatiotemporal scalpent. Helmert contrasts are depicted in this illustratiery., Condition 1
distribution of ERP waveform differences. versus all others, Condition 2 versus 3 and 4, Condition 3 versWithin

a condition, all subject&S;...S,) have the same values. The data matrix is

organized such that a single row contains all timepoifis..T;) for a
Methods single subject for all electrodds;. . .Ey,) within a condition. B: Singular
value decomposition on the cross-block covariance matrix of design and

The t tial | t f to th tati f th data generates two sets of vectors for each latent variable: design saliences
e termpartial least squareseiers 1o the computation of the 4 ejectrode saliences as well as its singular value. The spatiotemporal

optlmal Ieast-squ_ares‘lt “to part of a” Correlat!on Or covariance jstripution of the electrode saliences for a LV is plotted here for three
matrix. The part is the “cross-block” correlation between the eX-glectrodes. C: Scalp scores and design scores are obtained by matrix

ogenous and dependent measures. PLS is similar to PCA or eigemultiplication of the electrode saliences with the data matrix, and the
image analysigFriston, Frith, Liddle, & Frackowiak, 1993; Moeller, design saliences with the design matrix.

+
Design Scores

Partial Least Squares
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wise relate to the measures in the dataset. In this study, thenatrix of orthonormal contrast€ is constructed coding for the
exogenous block is a set of contrasts defining the experimentdt — 1 degrees of freedom in the experimental design. The contrasts
design. Four conditions were generated for each simulation, proare made for each subject €ohasn * k rows andk — 1 columns.
viding three degrees of freedom, and thus three contrasts. A set &/hen the data matrik is zeroed relative to the grand mean, the
orthonormal vectors was generated, contrasting the mean of theperation:
first condition with the average of the next three conditions; the
mean of the second with the average of the next two, and the mean CTsM/(nxk—1)
of the third condition with the mean of the four(helmert con-
trasts; Figure 1A, left Any set of three orthonormal contrasts yields ak —1 X m* t matrix Y containing the covariance of each
could be used without changing the analytic outcdilMielntosh  time point for each electrode with each contras€irisuperscript
et al., 1996. T represents a matrix transpgse
Y is then subjected to a singular value decomposit®vD):

Cross-block matrixEither the cross-block correlation or cross-
block covariance matrix can be examined with PLS. To maintain [USV] = SVO(YT],
the ERP amplitude information, the cross-block covariance be-
tween orthonormal design contrasts and each timepoint at eachhere
electrode in the ERP dataset was used.

UxS*VT =[YT].

Singular value decompositiorSingular value decomposition
(SVD) was conducted on the cross-block covariance mafig- From the decompositiot is anm t X k — 1 orthonormal matrix
ure 1B. SVD re-expresses the cross-block covariance matrix as aontaining the electrode saliencsjs ak — 1 X k — 1 orthonor-
set of orthogonal singular vectors tatent variables(LVs), the  mal matrix of design saliences aiglis a diagonal matrix of the
number of which is equal to the number of contrasts. The LVs arek — 1 nonzero singular valuegMATLAB code for PLS is available
analogous to eigenvectors in PCA, and account for the covariancéarough anonymous FTP at ftp.rotman-baycrest.ofpeb/ Randy
in the matrix in decreasing order of magnitude. This magnitude igls/erp_pls.
indicated by a third vector containing tsengular valuesfor each
LV (eigenvalues The singular values are used to calculate the Assessment of significanc&€he arbitrary decisions regarding
proportion of cross-block covariance accounted for by a LV. the number of LVs to retaife.g., scree plojsand which of the

Each LV consists of a pair of vectors that reflect a symmetricalweights to consider important are minimized by providing a sta-
relationship between those components of the experimental desidistical assessment of the LVs. This is done using permutation tests
(i.e., the contrasjsmost related to amplitude measures on onefor the LVs and bootstrap estimation of standard errors for the
hand, and the optimdin the least-squares senspatiotemporal electrode saliences. The permutation test assesses whether the
pattern of ERP amplitudes related to the identified design compoeffect represented in a given LV is sufficiently strong, in a statis-
nents on the other. The numerical weights at each timepointtical sense, to be different from random noise. The standard error
electrode location combination are calledectrode saliences estimates of the electrode saliences from the bootstrap tests are
(Figure 1B, far right. The electrode saliences identify the collec- used to assess the reliability of the nonzero saliences on significant
tion of timepoints that, as a group, are most related to the desighVs. These two tests are described below.

effects expressed in the LV. Theesign saliencesndicate the Statistical significance of each LV was assessed by means of a
degree to which each contrast is related to the identified pattern ghermutation test using 1,000 permutatiofig&aun et al., 1998;
scalp amplitude differences. Edgington, 1980; Mclintosh et al., 1996 his was accomplished

Additional information obtained from the PLS analysis are using sampling without replacement to reassign the order of con-
scalp scoresand design scoregor each LV, which are similar to  ditions for each subject. PLS was recalculated for each sample, and
factor scores. Scalp scores indicate how strongly individual subthe number of times the permuted singular values exceeded the
jects express the patterns on the LV. The scalp scores are the dobserved singular values was calculated. Exact probabilities are
product of subject’s measured amplitudes and the electrode saliepresented for all LVs. With the use of the permutation test prob-
ces on a particular LV. Although they derive from electrode sa-abilities, the threshold for determining the number of LVs to be
liences, we use the term scalp scores rather than electrode scommnsidered can be justified on a statistical basis.
to reflect the fact that the value reflects all electrodes. Design To determine the stability of the maximal electrode saliences
scores are calculated in a similar fashion using the design saliendentified on the LVs, the standard errors of the saliences were
ces.(Note that within a condition or task, all subjects will have the estimated through 200 bootstrap samp(&saun et al., 1998;
same design scorePlotting scalp scores for each condition by the Efron & Tibshirani, 1986; Fabiani, Gratton, Corballis, Cheng, &
design scoregFigure 1Q provides a visual depiction of the ex- Friedman, 1998 Bootstrap samples were generated using sam-
perimental effect on a LV, showing which conditions are maxi- pling with replacement, keeping the assignment of experimental
mally distinguished. conditions fixed for all subjects. PLS was recalculated for each

bootstrap sample. A salience whose value depends greatly on

Mathematical description of partial least squares analysis. which subjects are in the sample is less precise than one that
PLS is presently implemented using MATLAB code, and the remains stable regardless of the sample ch¢Sampson, Streiss-
following equations describe the procedure. For the analysis ofjuth, Barr, & Bookstein, 1989 The ratio of the salience to the
experimental effects on ERP waveforms, theslectrodes, mea- bootstrap standard error is approximately equivalentzs@ore if
sured acrosstime points, are made into single vectors for each ofthe normality of the bootstrap distribution is valiéfron & Tib-

n subjects, who are measured knconditions (see Figure 1A shirani, 1986. Those timepoints where the salience was greater
Thus, the data matrim hasn = k rows andm = t columns. A than twice the standard error are indicated above the plots of the
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electrode saliences. The primary purpose of the bootstrap is to Following a significant statistical assessment using permutation
determine those portions of the ERP waveforms that show reliabléests, the pattern expressed on the LV can be examined. This starts
experimental effects across subjects; thus no corrections for mulwith inspection of the scalp scores and design scOrégure 2,

tiple comparisons is necessary because no statistical test is peniddle panel. The pattern of scores indicates that Condition 1
formed. The statistical assessment is done through permutaticamplitudes are generally highgsositive scoresthan Condition 2
tests applied at the level of the full spatiotemporal pattern, ammplitudes(negative scorgsacross the whole heado identify
described above.

To summarize, thsignificanceof each LV is determined from

this pattern of amplitude differences, the electrode salie(Eigs
ure 2, bottom panglare examined in relation to the grand aver-

permutation tests, and ttreliability of the contribution of each ages. Saliences greater than zero indicate portions of the waveform
nonzero electrode salience is then determined using bootstraphere Condition 1 amplitude is higher than Condition 2 amplitude.
estimates of the salience standard errors.

Saliences less than zero indicate that Condition 1 amplitude is
lower than Condition 2 amplitude. The strongest saliences are for

Interpretation of PLS resultsAs described above, the PLS the timepoints at the first peak. They perfectly map onto the
analysis provides pairs of patterns defining experimental differ/atency shift seen in the grand averages: saliences are negative
ences in the recorded waveforms. Figure 2 contains simplified’om points 10 to 15, and positive from points 16 to 21. The
results from a PLS analysis. We show how the pieces would be pLHootstrap results indicated that nine of these amplitude differences
together for a single electrode from a two-condition experimentWere reliable across subjectsolid marks at the bottom of the
(based on a 31-electrode simulatiom the top panel, two grand plot): ) ) ) -
average ERP waveforms are plotted, clearly showing Condition 1 Figure 2 also illustrates that small saliences can be identified by
latency is longer than Condition 2 latency for the early peakPLS- The onset of the slow wave is somewhat earlier in ConFjl-
(points 10 to 25 Note that some small differences are also visibletion 2, and there are some fluctuations at the end of the recording.
during the slow-wave portion of the waveforms.
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Figure 2. Interpreting PLS results. A: Grand average waveforms for two
conditions at one electrode. B: If the latent variable is significant, scalp
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Those deviations are reflected in the saliences as belonging to
the pattern discriminating the two conditions. However, only
small portions of those timepoints were stable by bootstoaen
marks at the bottom of the plotWhen small stable findings such

as these are due to artifact or random noise, they are typically
associated with a single electrode or few timepoints. In most cases,
the pattern of electrode saliences extends across multiple electrode
sites. If so, the pattern would be interpreted to mean that the
differences between Condition 1 and Condition 2 were due to a
large latency shift at the first peaombined withsmall amplitude
differences later in processing. The electrode saliences can be used
then to identify new time periods or electrode locations for exam-
ination with more traditional analyses of latency and amplitude,
eliminating guesswork regarding the significance of waveform
differences. More importantly, PLS provides a scalp-wide assess-
ment of amplitude differences, and can indicate that multiple
differences in waveform amplitudes are related to experimental
manipulations.

Simulation Datasets

Source waveformsThe data consisted of three, 65-point sources
set along the midlinéFigure 3A, B. The Brain Electromagnetic
Source AnalysigBESA 2.2 software package was used to sim-
ulate the ERP and autocorrelated noise data for a full scalp
topography containing 33 data channels. The simulated epoch
began with an initial 11-point period with no systematic ERP
activity, followed by Source Ipoints 12—-20, Source 2(points
21-36, and Source 3(points 21-65 Source 1 reached its
maximum at point 16, and returned to zero at point 20, before
the onset of Sources 2 and 3. Sources 2 and 3 began at the
same time. Source 2 peaked at point 29, and had returned to
zero at the point where Source 3 reached its maxinfpwint

36). The maximal amplitude of Source 3 persisted over the
remainder of the epoch. The dipoles for the three soutEes

ure 3A) were set to an eccentricity of 40%; Source 1 was
maximally distributed over the frontocentral regi¢heta —60,

phi —90°); Source 2 was maximally distributed over the parietal

scores are plotted. This identifies the contrasts among conditions. c-€9ion (theta 40, phi —80°); and Source 3 was maximally
Electrode saliences identify the timepoints where the contrast is strongl)d'Str'bUt?d over the fronto-polar regl((rtheta.—G()", phi _90(.))- .
expressed. Reliable saliences by bootstrap are indicated at the bottom € noise-free fundamental topography is presented in Fig-

the plot.

ure 3C for 9 of the 33 channels.
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Figure 3. Simulation data. A: Location and orientation of dipoles. All three sources were placed along the midline. B: Source
waveshapes corresponding to each dipole. C: Scalp topography for the baseline condition for 9 of 29 electrodes. Note that Fc1 and Fc2
show effects from Source 1 and Source 3 activity, whereas Cz shows primarily effects from Source 1 and Source 2 activity. All other
electrodes express some combination of all three sources.

Experimental effectsSix experimental conditions were con- was used for each of the 12 dipoles making up the regional
structed for 20 simulated subjects. The first two conditioB& sources, and was based upon a Gaussian distrib(ibs 2.5,
and B2 represented baseline conditions reflecting the initial val-SD = 1.25. The noise level was maintained for each simulated
ues for the three sources. To generate these conditions, amplitugebject across the six simulated conditions, and unique noise was
values for each source were selected from a Gaussian distributiagenerated for each condition. Spatially and temporally uncorre-
(M = 200, SD = 50). The third condition reflected a doubling in lated noise, designed to reflect artifact arising from recording
the amplitude of Source (Sla), selected from a Gaussian distri- equipment and other nonbiological sources, was simulated using a
bution(M = 400,SD= 50) for each subject. The fourth condition random numbers generatM = 0, SD = 0.5. As with the
(S1al) reflected both a doubling of the amplitude of Source 1autocorrelated noise, separate noise files were generated for each
(M = 400,SD = 50) and a 25% decrease in its onset latefmy  simulated subject and condition. The uncorrelated noise files were
average from point 12 to)8The fifth condition was a doubling of average referenced to meet the convention of BESA before adding
the amplitude of Source £52a, M = 400, SD = 50). The sixth them to the autocorrelated noise and source waveform files.
condition (S2aS3a) simultaneously increased the amplitude of  Subject data files were constructed by adding the appropriate
Source 2(M = 400, SD = 50) and decreased the amplitude of unique autocorrelated noise file and uncorrelated noise file to the
Source 3(M = 100, SD = 50). The inclusion of this condition source waveform file for each subject in each condition. For
permitted a consideration of whether PLS could separately identifylotting convenience, two lateral electrode positions in the simu-
these two sites of changing activity. Where no experimental effectsation montage were dropped from the datd§«t5, FC8, leaving
were modeled, any differences between conditions resulted frorB1 channels for analysis.
chance variation.

Design of simulationsTwo simulations with four experimen-

Subject variability. Between-subject temporal jitter in source tal conditions in each were generated by selectively combining
activity onset was accomplished by varying the onset latency othe six different experimental effects. Baselin¢Bl1l) and Base-
the sources for each of the 20 simulated subjects. The onset latentipe 2 (B2) were included in each of the simulations to reflect
was based upon a Gaussian distributith= 0, SD= 5) and this  situations where an experimental manipulation does not result in
value was added or subtracted from the fundamental source actieRP differences. The remaining two conditions in each simula-
ity onset. For Sources 1 and 2, the termination of the source wason reflected experimental effects on ERP amplitudes. In Sim-
also decreased or increased by the same amount. This was naation 1, the experimental effects were restricted to Source 1.
necessary for Source 3, as its activity persisted over the epoch. Théere we incorporated an amplitude increase in one condition
individual simulated subject source-onset points were maintaine@Sla) and a combined amplitude increase and latency decrease
across all simulated experimental conditions. in another(Slal). For Simulation 2, effects at temporally over-

Spatially and temporally autocorrelated noise, designed to relapping sources were examined. This simulation examined an
flect ongoing EEG, was also simulated. The BESA regional-sourcemplitude increase at Source(82a) in one condition, and the
model (RS4.pay was chosen, with four sources placed in the left combination of a simultaneous amplitude increase at Source 2
and right anterior and posterior quadrants. The same noise levaind decrease at Source 3 in anot(8?2aS3a).
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PCA Results

As the primary expression of the source activity was at the midlineSimulation 1: Latency and Amplitude Effects at a Single
temporal PCA was conducted on three midline electrodes fromSOurce '

Simulation 2(Fz, Cz, and Pz The columns of the data matrix The grand averages from the four conditiqigd, B2, Sk, and
were the 65 timepoints, with electrodes and conditions for eac@lal) are shown in Figure 449 of the 29 electrodes are plotied
subject represented in the rows. SVD was applied to th& & ¢ first and second LVs accounted for 67.1% and 31.1% of the

covariance matrix. PCs explaining the first 95% of the covarianCecross_b|ock covariance matrix, respectively, and both were signif-

matrix W(_are_ r_etained for further analysis. . icant by permutation tegip = .00). The third LV accounted for the
The significance of the PCA results was assessed in two Way%emaining 1.8% of variance, and was not significépt= 1.00.

First, for each retained PC, scores for each experimental condition

were created for each subject, averaged across electrodes. Signif- | 1. plots of the scalp scores by design scores for LV1 are

icant differences among t_he score means were identified by paireghown in Figure 4B, left panel. The values for the design scores

t tests(corrected for multiple comparisongit = .008). (DS) indicate the primary distinction on this LV was between the
Permutation tests were also conducted on this dataset. Thig1a| (DS = +0.19 condition and the other three conditions

allowed us to use the same statistical criteria to compare the PC{ADS < —0.06. The electrode saliences for this L\Figure 4C,
results with that of PLS. The statistic assessed on the PCA resuligick lines, indicate the direction and the magnitude of the dif-
was theR? obtained from regressing a set of orthonormal designferences, simultaneously at all scalp locations. To reiterate, the
contrasts on the PCs from the permuted datasets. PCs ha¥Rfg an glectrode saliences simply indicate which timepoints and elec-
probability less than .05 were considered to be significant. Bootygdes showed amplitude differences related to the contrast shown
strap estimates for the component weights were also generated {Q the design scores. The deflections should not be interpreted as
identify which timepoints on the PC reflected stable factor Ioadingsseparme waveform components.

Visual inspection of the saliences indicates the ERP differences
Actual Event-Related Potential Data were restricted to those timepoints where Source 1 was active. The
Participants and designData from two single-feature conditions shape of the saliences identifies both shorter latefpmsitive
in a feature-conjunction auditory-oddball paradigm were used tqo|lowed by negative salienceand the increased amplitutron-
assess PLS in actual ERP data. Participants were 14 young aduligr positive saliences than negajive condition Sl relative to
(23 + 4 years, 8 femalesvho were participating as controls for a the other three conditions. This pattern was expressed most strongly
larger patient study. Participants attended to loudness-matcheg frontal and central electrodes. The nonzero saliences stable by
tones(e.g., 500 and 1500 Hz, 100-ms duration with 5-ms/fiale  pootstrap are indicated at the top of each of the plots. The bulk of
time) presented randomly to left or right ear via headphones. Inpe stable timepoints were located in the 10 to 20 point range,
separate blocks, the target dimension was either pitigh orlow)  consistent with the simulation. Thus, the experimental effect of a
or location (left or right eay. Target dimension was counterbal- compined increase in amplitude and latency shift at Source 1 was

anced across participants. In both conditions, 720 trials were pregepicted by a reversal of the saliences within the time period the
sented, and targets occurred on 25% of all trials= 180). source was active.

Hits were defined as button presses between 200 and 1,000 ms
after target onset. Correct rejections were defined as “no response” V2. Plots of the scalp scores by design scores for LV2 are
200 to 1,000 ms following a distractor. False alarms were buttorshown in Figure 4B, right panel. The design score weights indi-
presses occurring outside the hit window. Misses corresponded tgated the primary difference was between tha &indition(DS =
no response between 200 and 1,000 ms after target presentation.0.18 and the two baseline conditiof®S = —0.07, —0.11).

Note the weights for the &l condition were very close to zero

ERP recording.The electrophysiological signals were digitized (DS = —0.01), indicating its contribution to this LV was minimal.
continuously(256 Hz sampling rate per channel; bandpass 0.15-Although the saliences for this LiFigure 4C, thin linesresemble
40 Hz) from 32 electrodes using NeuroScan Synamps and softwarg “peak,” what they indicate is that the amplitude in theaS1
(v. 3.1), and archived for off-line analysis after each session. Eyecondition was higher than in the baseline conditions. The topog-
movements were recorded with electrodes at the outer canthi anéphy of the saliences matched the topography for Source 1, and
at the superior and inferior orbit. All electrodes were referenced tahe bootstrap results indicated the effect was most stable between
Cz during the recording; the data were re-referenced to an averagsints 10 to 20.
reference off-line and digitally filtered using a 32 Hz lowpass In summary, the PLS on this dataset distinguished the two
filter. experimental effects. The strongest effect was the combination of

an increase in amplitude and a latency decrease in conditiah S1

ERP analysisBefore averaging the ERPs, the ocular artifacts Any experimental manipulations that produce combined amplitude
associated with blinks were corrected using an ocular source conand latency differences will have a shape that resembles LV1. If
ponent approacliNeuroScah Averaging occurred off-line, fol-  hoth aspects are reliable by bootstfap in the present simulatipn
lowing the computerized automated rejection of trials contaminatedhen one can confidently claim the two effects occurred. The
by excessive peak-to-peak deflection, or amplifier saturdttldf00  second LV identified the second experimental effect, the increase
uV). The epoch included a 200-ms prestimulus baseline and 800-ma amplitude in condition S4. At all other timepoints, the saliences
poststimulus. In each condition, the ERPs were averaged sepaere essentially zero, indicating the other peaks in the recorded
rately for hits, correct rejections, false alarms, and misses. waveform did not differ among conditions.

For the PLS analysis, subject grand averages for hits and
correct rejections from 28 electrodes were usdte four eye  Simulation 2: Spatiotemporal overlap
movement channels were not incluge@ihe epoch analyzed con- The grand averages for the four conditiofl, B2, S&, and
sisted of 205 timepoints starting at stimulus on@t800 ms. S2aS3a) are shown in Figure 5A. Due to the orientation of the
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Figure 4. Simulation 1: Latency and amplitude effects at a single source. A: Grand averages for 9 of 29 electrodes. Both effects are
clearly seen in the % condition(-.—), while the Sh condition(— ) contains only the increased amplitude. B: Left panel: Scatterplot

of scalp scores by design scores for LV1. The weight of the design scores for each condition can be used to identify the contrasts being
expressed on the LV. LV1 design scores indicates thal 8andition (x) is different from the other three conditions. The overall
positivity of the scalp scores in the &1condition indicates the electrode saliences are likely to be mostly positive. Right panel:
Scatterplot of scalp scores by design scores for LV2. The weight for tabc®hdition () is zero, indicating it is not contributing to

this contrast. Thus, this LV is contrasting theaSdondition (+) with the baseline conditionex,0). The effect is largest for the
difference between the &lcondition and the second baseline condition. This reflects small differences between the two baseline
conditions resulting from the random assignment of peak amplitudes. C: Electrode saliences far)ldid LV2 (—), rescaled by

the LV singular value. Stable peak saliences are identified at the top of each plot fdel\&hd at the bottom of each plot for LV2

(#). For LV1, the saliences identify latency and amplitude effects, expressed most strongly at the frontal electrodes. The weights are
primarily positive, which when combined with the positive loading on the LV1 design scores, correctly identifies the increased
amplitude and shorter latency in thegbtondition. For LV2, the peak saliences are also positive, again indicating a positive relation
with the design contrasts. This correctly identifies the higher amplitudes in the®ition compared to the baseline conditions.

sources, the scalp potentials from Source 2 and Source 3 also hadndition S2&, which had only the increased amplitude at Source
spatial overlap at most electrode siteé Fz, P2. However, this 2. It would be expected that the experimental effect differing the
overlap did not occur at Fcl and Fc2, where only effects of Sourcenost from the two baseline conditions would be theaSZa
3 were expressed, nor at C3, Cz, and C4, where ERP difference®ndition. Plots of the scalp scores by design scores for LV1,
related to Source 2 activity were expressed. shown in Figure 5B, left panel, indicated a more complex pattern
The first and second LVs accounted for 84.1% and 14.9% of theof differences among conditions, but supported this expectation.
cross-block covariance matrix, respectively, and both were signifThe design scores showed strong positive weights for tleSS2
icant by permutation te$p = .00). The third LV accounted for the condition(DS = 0.16) and equal, strong negative weights for the
remaining 1.0% of variance, and was not significapt= .34). two baseline conditioneDS = —0.11). This indicated the primary
difference being expressed on LV1 was between th&S32 con-
LV1. The SaS3a condition consisted of two simultaneous dition and the two baseline conditions. However, the positive score
effects, an increase in amplitude of Source 2 and a decrease for the S condition(DS = 0.06) indicated it also differed from
amplitude of Source 3. This contrasts with the single effect inbaseline. Because PLS groups similar differences together, LV1
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Figure 5. Simulation 2: Experimental effects at sources with spatiotemporal overlap. A: Grand averages. The increased amplitude at
the second peak in the 8Zondition (-~ -), and the combined effect of increased amplitude at Source 2 and decreased amplitude at
Source 3 in the S253a condition(—.—) are shown. B: Left panel: Scatterplot of scalp scores by design scores for LV1. The largest
discrimination on this LV is between the 823a condition(x) and the two baseline conditio%,0). This LV also indicates that the

S2a condition (+) differs from the two baseline conditions. Right panel: Scatterplot of scalp scores by design scores for LV2. The
largest discrimination on this LV is between theaS3a condition(x) and the Sa condition(+), with additional contributions from

the difference between the two baseline conditiong) and the S2 condition(+). C: Electrode saliences for LML) and LV2(—),

rescaled by the LV singular value. Stable peak saliences are as in Figure 3. For LV1, the saliences indicate stable peak effects at the
second peak and at the slow wave. For LV2, the effects are also expressed at the second peak and at the slow wave, but the relationships
are reversed for the second peak. As was seen in the grand means, Fcl and Fc2 only show stable saliences in the slow wave, whereas
C3, C4, and Cz show strong saliences only at the second peak. All other electrodes reflect the combination of ERP amplitude
differences.

indicated that the S#53a and S2 conditions shared some com- mental effect at the slow wave. As the design scores were positive
mon differences from the baseline conditiaiisat is, the ampli- for the contrast between the &23a and baseline conditions
tude effect at Source)2 (S2aS3a < baseling, the negative saliences for these points indi-
The pattern for the electrode saliences for this LV reflected thiscated the effect of the decreased amplitude at Source 3.
combination of differences among conditiofiSigure 5C, thick
lines). Interestingly, where Sources 2 and 3 combined at the scalp, LV2. The scores for LV2 are shown in the right panel of
both signals were incorporated into the LV. Where the sources hafligure 5B. As for LV1, the scores for LV2 present a complex
little or no overlap(e.g., Cz for Source 2, Fc1 and Fc2 for Source picture. The primary distinction was between the®2S= —0.19
3), the saliences reflected effects of the single source. and SaS3a (DS = 0.12 conditions, which at the level of their
The strongest saliences were associated with the increasemburces, differed only in the slow-wave amplitude at Source 3.
amplitude of Source 2 from points 20—36. These were seen allowever, the scores for the two baseline conditions were also
positive saliences at the posterior electrodesy., Pz, which positive (DS = 0.03), indicating they were also different from the
reversed at frontal-polar sitésot plotted. The remaining portions S2a condition. This pattern of scores suggested that this LV in-
of the electrode saliences reflected differences in the slow wave. Adexed differences between &23a and S& as well as similar
electrodes where the recorded scalp activity reflected activity frondifferences between the 82ondition and the baseline conditions
Source 3 but not Source (Fcl, Fc2, PLS identified the experi- that were not accounted for in LV1.
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The electrode saliences for LV2, shown in Figure G@in all nonzero timepoints after point 16 were stable. This included the
lines), reflected a combination of differences at the second peakveights associated with Source 1 activity. PG2gure 6B indi-
and during the slow wave. The negative saliences at the centralated effects resulting from amplitude differences in Source 2 and
electrodes, taken with the negative design scores for the S2Source 3. As for PC1, the two baseline conditiois= 5.87, 5.93
condition, identified the modeleidcreasedamplitude in S2 rel- differed from the two conditions with added effe¢hd = 10.16 for
ative to the baseline conditior{®.g., points 22-37 at ¢zThe S2a and M = 8.72 for S&S3a), and the two conditions with
centroparietal and parietal electrodes expressed a combination effects differed from each other. Bootstrap estimates indicated that
effects: negative saliences during the second peak, and positival points after point 21 were stable.
saliences during the slow wave. The frontal electrodes expressed The shape of the second PC was most similar to the PLS
differences primarily reflecting the slow-wave activity. results, in that it only identified differences during the second peak

This again demonstrates that when multiple effects in the scaland the slow wave. However, the statistical comparison of the
amplitudes define differences among experimental conditions, thecores for both PC1 and PC2 indicated significant differences
LV will contain those multiple effects. When the topography al- among conditions. Thus, the experimental effects would have been
lows a dissociation of those effects, they can be identified on théncorrectly assigned to the early peak as well as to the later peak
plots of the saliences, offering a suggestion to the researcher thand slow wave.
sources with different scalp topography may be responsible. Inter- Because the first PC accounted for 94% of the variance, the two
estingly, note that the saliences for LV1 and LV2 at all electrodesvectors would typically not be rotated. After Varimax rotation
were essentially identical during the slow-wave time period. We(Figure 6Q, Source 1 activity was seen on both PC1 and PC2.
interpret this to indicate the differences between theS®2 con-  [This was also true when the third, nonsignificant @27% of
dition and the two baseline conditioihe primary distinction on  variance was included. Analysis of the scores from the rotated
LV1) were of the same magnitude as the differences between theectors again indicated significant effects for both PCs. For rotated
S2aS3a and Sa conditions(the primary distinction on LVR PC1, SaS3a differed from all other conditions, and mapped onto

the modeled differences. For rotated PC2a%2d SAS3a dif-

Comparison with PCA fered from the two baseline conditions, but not from each other.

To determine if tempora| PCA and PLS would produce sim”arThe point here is that although rotation extracted the modeled

conclusions, data from three midline electrodgg, Cz, Pz from experimental manipulations as simple effects, some of that differ-

Simulation 3 were analyzed with both techniques. The findings forence would be attributed to amplitude differences during Source 1

the PLS analysis on the reduced dataset were equivalent to thogétivity, where no differences were modeled.

shown in Figure 5C for the full dataset. The first two PCs ac-

counted for 93.9% and 5.7% of the covariance matrix, respecActual ERP Data

tively. Only the first two PCs were significant as assessed byAnalysis of the behavioral measures indicated performance was

permutation tests, and are shown in Figure 6A and B. similar in the location and pitch conditions. For the location con-
Because PCA solutions are not constrained to identify a pardition, the proportion of hit$SD) was 97%(2.5%), and the mean

ticular source of variance, they may reflect differences or com-number of false alarms was 3(B.5), and mean reaction time was

monalities among conditions, or some combination of these effects327 (49) ms. In the pitch condition, the mean number of hits was

This was evident in PC1, where effects from all three sources caf8%(1.6%), with a mean of 3.22.1) false alarms, and 3138) ms

be seer(Figure 6A). Comparisons of the scores for PC1 indicated mean reaction time.

the baseline conditiondV = —0.65,—0.66) differed from the two The grand averages for ERPs in the four conditions for the

experimental conditiongM = 1.74 for S& and M = 2.78 for  auditory oddball task are presented in Figure 7. Visual examination

S2aS3a) and the two conditions differed from each other. Boot- of these data identified a large positive deflection from 200 to

strap estimates of the PC weights, plotted under the PC, indicate@00 ms, most strongly expressed at Pz in the two hit conditions
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Figure 6. Simulation 3: Temporal PCA results. Points stable by bootstrap are indicated below the waefoAnPC1 accounted

for 93.9% of the covariance and reflected effects at all three peaks. B: PC2 accounted for 5.7% of the covariance and reflected effects
related to the second peak and the slow wave. C: Results of varimax rotation of the first two principal components. Rotated PC1
reflected effects at the first and third peaks; rotated PC2 reflected effects at the first and second peaks.
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Figure 7. Grand averages for actual ERP data: Auditory Oddball task. Targets were distinguished from nontargets based on pitch or
location. Positive is up. Data from four conditions are plotted: Hits for Ritch-) and Location(- - -); and Correct Rejections for Pitch
(—--—) and Location(m).

compared to the two correct rejection conditions. Additionally,  The electrode saliences are shown in Figure 8B, with stable
there were differences at 100 ms at a number of electrodes, amkak saliences based on bootstrap at the top of each electrode plot.
slow-wave differences after 400 ms at frontal and posterior elecPositive electrode saliences indicated that the difference expressed
trodes. The goal of the PLS analysis, then, is to identify thaton this LV was stronger amplitudes to hits compared to correct
particular combination of scalp amplitudes related to specific dis+ejections. The pattern of electrode saliences indicated that a com-
tinctions among the four conditions. The full sweep from 0 to bination of differences in scalp potentials distinguished hits and
800 ms was analyzed, and three Helmert contrasts were used torrect rejections. The strongest saliences were at those electrodes
create the covariance matrix. The first LV accounted for 92.5% ofexpressing the P300 effe@te., Pz, P3, P4, and ¢4The bootstrap
the cross-block covariance, and was significant by permutation tesesults indicated these saliences were stable for a large portion of
(p = .000. The second and third LVs accounted for 6.8% andthe 200—600 ms time period at those electrodes. The early peak at
0.7% of the cross-block covariance, respectively, but were nofl00 ms also showed stable saliences across the head. These sa-
significant(ps = .714; 1.00, so they were not considered further. liences were positive at the back of the head and negative at the
front of the head, and the shape of the saliences indicates an
LV1. The design scorggigure 8A), indicated the primary con- amplitude difference, which is confirmed by examining the grand
trast in this dataset was between the two correct rejection condiaveragege.g., T9. The magnitude of this difference was some-
tions(DS = —0.13 and the two hit condition€DS > +0.11). The what larger on the left than the right si¢eg., T5, Mal versus T6,
smaller range in scalp scores for the correct rejection condition$/a2). Differences were also seen for the second early peak at
indicated the ERP amplitudes were more similar among subjects it50 ms at O1, Oz, and O2, and at P3, Pz, and P4. Slow-wave
those two conditions compared to their ERP amplitudes in the twasaliences were stable for the central and right posterior as well as
hit conditions(Examination of the scalp scores can also be used taight temporal electrode sitgg.g., 1z, Ch2, Ma2, and Ft10but
identify potential outlierg.A combination of factors may have con- this effect was not as strong at frontal electrodepl, Fpz, and
tributed to the differences in variability between hit and correct re-Fp2). The late negativity>>700 mg at left temporal sites in the hit
jection scores. First, there were fewer target trials compared t@onditions was also identified~t9, T3, T5, Mal.
nontarget trial$180 versus 540 Secondly, it is likely that the ERPs
to target stimuli reflected not only the perceptual response to the LV2. This LV was not significant by permutation test, and
deviant stimulus, but also some aspects of the preparation and exxe are commenting on those results only to demonstrate that
ecution of the motor response. PLS can be used to discount apparent differences in the wave-
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Figure 8. PLS results for actual ERP data. A: Scatterplots of scalp scores by design scores for LV1. This LV contrasts the two correct
rejection conditiong+, %) from the two hit conditiongxX,0). Note the tighter clustering of the scalp scores in the correct rejection
conditions compared to the hit conditions, indicating more subject variability on hit trials. B: Electrode saliences for LV1, with stable
peak saliences shown at the top of each (#9t This LV expressed a combination of effects across the scalp. The strongest saliences
are seen at the central-parietal electrodes, reflecting the P300 differences. Two different kinds of slow-wave differences were seen, one
at posterior electroddg.g., Ma2, CbRand the other at frontotemporal electrodes., Ft9, T3, Th Early peak differences at 100 and

150 ms also distinguished hits from correct rejections. This distinction was seen as a single peak at temporal sites and as overlapping
peaks at occipital electrodes.

forms. The design scores on LV2 indicated the primary differ-amplitude differences when detecting targets based on pitch com-
ence was between the two hit conditions. In fact, some differencepared to location in this sample. ANOVA on the amplitude and
between pitch and location hits appear in the grand averagestency of the P300 at Pz also indicated no significant differ-
(e.g., C2. However, because this LV did not reach statistical ences between the two hit conditions(1,13 = 0.129 and
criterion for significance, we conclude that there are no reliable0.018, respectively.
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Discussion ences were between hits and correct rejections at cépaaétal

electrodes—the “P300" effect. PLS identified this effect as the
This paper introduced the application of the multivariate Partialmau-or source of variance in the cross-block covariance matrix
Least Squares technique to the full spatiotemporal extent of eveniyv1), as the electrode saliences were strongest at this time
related potential data. PLS shares some features with other mU"beriod. The discrimination between hits and correct rejections
variate tools, such as PCA, in that it makes use of the singulafesyited from amplitude differences at multiple scalp locations
value decomposition algorithm to extract information from the anq timepoints. Thus, in addition to the differences related to the
dataset. It differs from PCA in that the solutions are constrained tgo300, PLS identified early amplitude differences at 100 and
reflect the part of the variance in the dataset associated withsg ms as well as additional slow-wave differences at 300 to
amplitude differences due to experimental manipulations. The regog ms, and late effects at 700 to 800 ms. The distinct spatial
sulting pairs of vector¢design and electrode saliengeefine the  opographies of the electrode saliences indicated that multiple
commonalities between the ERP measures and the experimentgbyral sources contributed to the observed waveform differ-
design. Additionally, we provide mechanisms to assess the signifances. Differences on hit trials when attending to pitch versus
icance of the LVs as a wholgermutation tesjsand subsequently  |ocation were not statistically significarit\VV2).

assess the stability of the maximal saliendesotstrapping This For this initial demonstration, we purposely selected an ERP
type of statistical assessment could equally be applied to PCAjataset with clear distinctions in the waveforms. It is important to
(Braun et al., 1998 note that PLS would be expected to identify any effect that would

To show the range of effects PLS can identify, the results of twopg typically be seen in more traditional analyses of peak ampli-
simulations were presented, as well as a direct comparison with,des and latencies. One advantage of PLS is that because all
PCA. In all cases, the amplitude differences identified by PLSg|ectrodes are assessed, new information may be obtained that
were restricted to those electrodes and timepoints that reflected thgouid not be seen otherwise. A second, and equally important
experimental differences. The first simulation applied two separatgeature, is that the PLS results indicate which differences in the
experimental effects to a single peak. PLS separated differencgsgp waveforms “hang together.” In the present dataset, it would
due to increased amplitude from those due to a combination ofiot e sufficient to describe the results in terms of simple differ-

increased amplitude and decreased latency. The second simulati@fces in the P300 or P100 components because the differences
was designed to demonstrate that PLS identifies differences in thgetween hits and correct rejections were in fact a combination of

scalp recordings, rather than differences in source waveforms. Igifferences at multiple timepoints and electrodes.
this simulation, experimental effects were placed on portions of The pLS analysis, as presented in this paper, can be consid-
the waveform where the scalp topographies reflected the temporged to conduct an omnibus test of the major relations between
overlap of two underlying sources. Here, the differences identifiedpe experimental design and the measured amplitudes, and as
by PLS reflected combined effects, rather than singularly identi-ych, we have used Helmert contrasts to reflect the experimental
fying the differences in the source amplitudes. design. One of the strengths of PLS is that it is also an excellent
Temporal PCA on this same dataset produced a(PC2;  tog| for exploratory data analysiMartens, Izquierdo, Thomas-
Figure 6B that had a shape very similar to that of the electrodegen & Martens, 1986 so if one had specific questions regard-
saliences identified by PLS. Statistical comparisons of the scoregq relations between task conditions, the design and data matrices
on PC2 identified the correct set of differences among experimengan pe generated to address those questions. So, for example,
tal conditions. However, PC1 also identified reliable eff¢éty-  many ERP effects sensitive to attentional manipulations are seen
ure 6A) that corresponded to all nonzero portions of the waveformjy the early peaks. In this case, the researcher may decide to
(this was true even when more stringent criteria were appl&sl  |imjt the analysis to this time period. Another question raised in
no experimental effect was placed on the early peak, this PC likel{-Rrp research concerns laterality effects, in which case the data
reflected some combination of commonalities and differences amongpg design matrices can be organized to contrast both experi-

the four conditions. Statistical analysis of the scores indicated thghental condition and hemisphere. In fact, there is a suggestion
the two conditions with experimental effects differed from eachin the present results that the differences between hits and cor-
other and from the two baseline conditions. Thus, experimentafect rejections are more strongly expressed over the left hemi-
effects would be incorrectly attributed to all measured peaksgphere. We have conducted PLS analyses on this dataset to
Varimax rotation of the PCA solution identified the two simple examine both types of questions, and those data will be pre-
effects, but did not eliminate the erroneous weights associated Wit§ented more fully in a future paper.

the first peak.

Data Considerations
Application to Actual ERP Data As is the case for any analysis technique, PLS works best when the
The subject, electrode, and peak onset variability in the simuladata are relatively clean. In situations where there is large vari-
tion studies was added to the experimental differences to approability within condition across the recorded waveforfag., either
imate intersubject variability that would be found in actual ERP peak amplitudes or latenciesPLS will be less able to detect
data. The simulation studies indicated that PLS was not affectedignificant experimental effects in the scalp waveforms. This is
by this variability. The real power of tools such as PLS is in likely to be especially true in patient populations. In fact, our first
their ability to explain differences in actual scalp recordings. Weapplication of PLS to ERP data was in a study comparing ERP
chose to do this on data from an auditory oddball task, withmeasures of visual selective attention in two groups of children. A
large differences between the experimental conditions. Thesgroup diagnosed with Attention Deficit Hyperactivity Disorder
particular data were part of a larger experiment designed tavas compared to a group of control childrdrobaugh, Taylor, &
extend the findings in the literature by directly contrasting theMclntosh, 1997. The high variability in the patient group pro-
effects of attention to pitch with attention to location. As is duced results that were difficult to interpret, and stimulated the
typically seen in oddball paradigms, the largest amplitude differ-current simulation study.
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Relations of Scalp Differences to Source Activity in Simulation 2(Figure 5 expressed two contrasts. The strongest

It has been known for some time that linear decomposition modelsgffect was the difference between conditioraS2a and baseline,

such as PCA, ICA, and SVD, cannot distinguish underlying sourcesvith a smaller difference between conditioné&@hd baseline. We
contributing to separate PCs without added constraints or assumpse currently examining whether further post hoc analysis of the
tions(e.g., Borgen & Kowalski, 1985; Sylvestre, Lawton, & Mag- PLS solutions can be used to separate multiple effects on a LV. One
gio, 1974. PLS also does not do this. What it does do is identify approach operates on the design scores to determine how strongly
distinct combinations of scalp potentials that define contrasts bespecific aspects of a contrast are expressed on the LV. In this case,
tween two or more experimental conditions. Conceptually, the LVone can regress post hoc contrasts against the design scores to
electrode saliences frequently represgaighteddifference wave-  verify the visual impression of the strength of the effects being
forms, which are assessed statistically and simultaneously. In thexpressed on a LV. This approach has been used successfully in
rare case where only one part of the scalp topography differdrain imaging data to distinguish age and delay effects in working
between conditions, PLS will identify that single topography. This memory(Grady et al., 1998 The post hoc regression is done as
was seen in Simulation 1, where the topography accurately repart of the permutation test, allowing both an assessment of the
flected the activity of a single neural source. In most cases, ERBignificance of the LV as well as hypothesis-driven contrasts.
differences related to experimental manipulations will be the resulAnother alternative is to conduct a “post hoc” SVD on the LV

of changes in multiple neural sources. So for example, Simulatiorsaliences to produce separate temporal and electrode saliences.
2 contained two experimental effedtS2a and SaS3a) having  This approach appears to be most successful when the PLS results
both spatially and temporally overlapping scalp topographies. Anyidentify single effects such as those found in SimulatioflLa-

PLS contrast that simultaneously identified these two effects wouldaugh, West, Taylor, & McIntosh, 198However, the important

by definition also have electrode saliences expressing these twieature of PLS as it is presently implemented is its ability to isolate
topographies. Thus, both LVs reflectedmbinationsof amplitude  only those aspects of waveform differences that are related to
effects, and we were able to state that both the slow-wave portioexperimental manipulations.

of the waveform and the second peak were affected by the exper- PLS can also be extended to examine relations between behav-

imental manipulations. ioral responses and scalp potentials, in a fashion similar to that
used by O’Donnell and colleagué$999 to examine relations
Extensions and Future Directions between brain measures and ERP peak amplitudes. In that study,

The present simulations and application to real ERP data werPLS was used to examine the relations between measures of brain

applied to a single experimental group with multiple conditions. morphology and the N200 and P300 components of the ERP in

PLS is also applicable to designs where two groups are conpatients with schizophrenia. Peak amplitudes of the N200 and

trasted(Cabeza et al., 1997; Grady et al., 1998; Lobaugh et al. P300 were identified for each subject, and PLS was conducted on

1997. Additionally, if the research questions of interest relate tothe two amplitude measures from each electrode, rather than the

the strength of aspecific set of contrasts, these can be used infull waveform. In this case, PLS would identify those aspects of

lieu of the Helmert contrasts presented here. The only restrictiomehavior(or morphology that most strongly correlated with the

is that they must be orthonormal. We note though, that any semeasured ERPs.

of orthonormal contrasts that account for all of the degrees of The current paper has described a two-block PLS model, with

freedom will produce the same outcome with P[8cintosh  design and ERP amplitude as the two blocks under consideration.

et al., 1996. Any multiblock path model can be examined using the PLS ap-
PLS is not restricted to pairwise comparisons, and frequentlyproach(Frank & Kowalski, 198%. The multiblock approach has

the LV results will indicate multiple differences in scalp potentials. been successful in behavioral teratologyookstein, Sampson,

This is problematic only when one wishes to assign a specific parBtreissguth, & Barr, 1996and PET brain imagindMcintosh

of the contrasts being express@dg., A> B versus A> C when  etal., 1998, so the ability to describe simultaneous spatiotemporal

the LV indicates A> B > C) to specific segments of the electrode relations among task variables, behavioral responses, and mea-

saliencedi.e., derive component waveformg-or example, LV1  sured scalp potentials is a very enticing future possibility.
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