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Abstract

One challenge in the analysis of event-related potentials~ERPs! is to identify task-related differences in scalp
topography. The multivariate Partial Least Squares~PLS! analysis was used to identify the spatiotemporal distribution
of ERP differences related to experimental manipulations. Two simulations included latency shifts and amplitude
changes at peaks with temporal overlap. PLS identified effects only at modeled timepoints and electrodes. In contrast,
principal components analysis identified differences at most timepoints. We also demonstrated that PLS identified
combinations of waveform differences, not isolated sources. ERP components in an auditory oddball task were also
assessed with PLS. The primary distinction was between ERPs on hit and correct rejection trials, expressed at multiple
timepoints and electrodes. PLS provides a mechanism to describe experimental differences in ERP waveforms,
simultaneously across the head.

Descriptors: Partial least squares, Principal components analysis, Singular value decomposition, Event-related
potentials

Event-related potential~ERP! data provide both spatial and tem-
poral measures of brain activity related to cognitive processing.
Typically, epochs analyzed include about 100 ms prestimulus ac-
tivity and 1,000 ms poststimulus, at 30 or more electrode sites
across the scalp. These are large, multivariate datasets, generally
containing more than 6,000 datapoints per subject in every condi-
tion. Until recently, univariate analyses~ANOVA, t tests! have
been most frequently used to extract effects related to experimental
manipulations from the data. To reduce the impact of multiple
comparisons, analysis is typically restricted to latencies of partic-
ular interest and a small number of electrode locations. The choice
of electrode sites as well as the interval of interest are either based
on a priori hypotheses, or selected after visual inspection of the
ERP data. Both approaches have problems and limitations. Analy-
sis restricted to a priori selected intervals and0or electrodes may
overlook new information present in the dataset. Analysis based on

post-hoc selection of electrodes and intervals is influenced by the
experimenter’s own biases. The need for more objective statistical
analysis of these large datasets has prompted the application of a
number of linear multivariate techniques such as principal com-
ponents analysis~PCA; Donchin & Heffley, 1978!, independent
components analysis~ICA; Makeig, Juny, Bell, Ghahremani, &
Sejnowski, 1997; Makeig et al., 1999!, and spatiotemporal mod-
eling ~STM; Achim & Bouchard, 1997!.

One primary assumption made in the application of linear
multivariate analyses to study ERPs is that the scalp recordings
reflect a linear combination of electrically active sources within
the brain. PCA has been the most frequently used, and can provide
separate analysis of the spatial or temporal relations in ERP data.
Most often, it has been used to examine the underlying temporal
patterns elicited by different experimental conditions~Picton et al.,
2000!. Temporal PCA provides orthogonal vectors, principal com-
ponents~PC!, reflecting patterns of scalp amplitudes across the
time interval. The PCA solution is then typically rotated~Varimax,
Promax! to maximize the signal within individual PCs. Newer
methods such as ICA remove the orthogonality restriction of PCA
~Makeig et al., 1997!, examine spatial PCA separately~Dien,
1998! or combine spatial and temporal decomposition into a single
analysis~Achim & Bouchard, 1997; Spencer, Dien, & Donchin,
1999!. These techniques have generated interest because the solu-
tions are represented as multiple “virtual” or “spatiotemporal”
ERPs containing the spatial expression of a temporal pattern. It is
important to note that the components identified byall of these
techniques are not just related to the experimental manipulations.
In the PCA approach, in order to examine which PCs are relevant
to experimental manipulations, component scores are analyzed by
ANOVA. Because PCA extracts commonalities as well as differ-
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ences among conditions~Widaman, 1993!, a single PC may reflect
both of these sources of variance.

Typically, the goal of multivariate techniques such as PCA,
ICA, and STM is ultimately to describe important differences in
the ERP waveform that are related to the experimental manipula-
tions. We present here the application of a new multivariate tool,
partial least squares~PLS; Wold, 1975!, to the analysis of ERP
datasets. PLS can be used to describe the relation between one set
of measures, like the experimental design or behavioral responses,
and a large set of dependent measures, in this case scalp potentials.
The primary advantage over other multivariate techniques is that it
is designed to identify where, simultaneously in space and time,
the strongest experimental effects are expressed. PLS has been
used extensively for one-dimensional images from spectrographs,
as in chemometrics or remote sensing~e.g., Heise, Marbach, Jan-
atsch, & Kruse-Jarres, 1989; Hellberg, Sjostrom, & Wold, 1986!.
Its first application in psychology was an examination of the
relations between multiple measures of maternal drinking behavior
and offspring outcome in a study on fetal alcohol syndrome~Streiss-
guth, Bookstein, Sampson, & Barr, 1993!. PLS has recently been
adapted for functional neuroimaging analysis to identify unique
relations between~a! experimental design and brain activity~McIn-
tosh, Bookstein, Haxby, & Grady, 1996!, ~b! brain activity and
behavioral responses~McIntosh, Lobaugh, Cabeza, Bookstein, &
Houle, 1998!, and~c! single brain regions and the rest of the brain
~McIntosh, Rajah, & Lobaugh, 1999!.

To illustrate the utility of the PLS technique as it is applied to
the full ERP dataset, we first present the results from two simu-
lation studies. For these studies, activity in three neural sources
was combined and projected onto the scalp. The first simulation
demonstrates how PLS identifies experimental effects expressed as
latency shifts at a single neural source. The second simulation was
designed to test the limits of PLS by incorporating multiple effects
at simultaneously active sources. Because temporal PCA is the
most frequently used multivariate analysis in the literature, we
contrasted the PLS results from this simulation with those from a
temporal PCA. Finally, to illustrate the relevance of PLS for real
ERP data, we applied the PLS analysis to an ERP dataset from an
auditory oddball paradigm.

To anticipate the results, in all cases, PLS identified stable
differences in the waveforms only at timepoints where they were
modeled. Where the scalp potentials did not differ across condi-
tions, the PLS results indicated that those timepoints did not
contribute to the results. Interpretation of the first simulation was
straightforward, as the PLS results mapped onto the topography of
the manipulated source. The results from the second simulation
demonstrated that PLS identifies only the specificcombinationsof
waveform differences that distinguish conditions. In the case where
differences in scalp activity deriving from two simultaneously
active sources best defined an experimental effect, this combina-
tion was revealed on a single dimension. These findings indicate
that PLS is a sensitive tool for detecting the spatiotemporal scalp
distribution of ERP waveform differences.

Methods

Partial Least Squares
The termpartial least squaresrefers to the computation of the
optimal least-squaresfit to part of a correlation or covariance
matrix. The part is the “cross-block” correlation between the ex-
ogenous and dependent measures. PLS is similar to PCA or eigen-
image analysis~Friston, Frith, Liddle, & Frackowiak, 1993; Moeller,

Strother, Sidtis, & Rottenberg, 1987!, but one important feature of
PLS is that we constrain the solutions to the part of the covariance
structure attributable to experimental manipulations. Moreover,
PLS is ideal for datasets where the measures within a block are
highly correlated~e.g., scalp potentials! because items within a
block are not adjusted for these correlations~cf., canonical corre-
lation!. Figure 1 provides a graphical outline of the major steps in
the PLS analysis, which is described in detail below.

Data matrix. The data matrix consists of one row of data per
subject, blocked by condition. The spatial and temporal informa-
tion is maintained by stringing together the amplitudes at all
timepoints for each electrode. For example, in a study with 32
electrodes having 200 timepoints at each electrode, each row of
data would contain 6400 datapoints~Figure 1A, right!.

Design matrix.PLS examines the relations between the data of
interest and some exogenous source thought to influence or other-

Figure 1. Steps in the design-brain PLS. A: A matrix containing design
contrasts and the data matrix are created. The design matrix can be any
orthonormal set of vectors defining the degrees of freedom in the experi-
ment. Helmert contrasts are depicted in this illustration~e.g., Condition 1
versus all others, Condition 2 versus 3 and 4, Condition 3 versus 4!. Within
a condition, all subjects~S1. . .Sn! have the same values. The data matrix is
organized such that a single row contains all timepoints~T1. . .Tt ! for a
single subject for all electrodes~E1. . .Em! within a condition. B: Singular
value decomposition on the cross-block covariance matrix of design and
data generates two sets of vectors for each latent variable: design saliences
and electrode saliences as well as its singular value. The spatiotemporal
distribution of the electrode saliences for a LV is plotted here for three
electrodes. C: Scalp scores and design scores are obtained by matrix
multiplication of the electrode saliences with the data matrix, and the
design saliences with the design matrix.
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wise relate to the measures in the dataset. In this study, the
exogenous block is a set of contrasts defining the experimental
design. Four conditions were generated for each simulation, pro-
viding three degrees of freedom, and thus three contrasts. A set of
orthonormal vectors was generated, contrasting the mean of the
first condition with the average of the next three conditions; the
mean of the second with the average of the next two, and the mean
of the third condition with the mean of the fourth~Helmert con-
trasts; Figure 1A, left!. Any set of three orthonormal contrasts
could be used without changing the analytic outcome~McIntosh
et al., 1996!.

Cross-block matrix.Either the cross-block correlation or cross-
block covariance matrix can be examined with PLS. To maintain
the ERP amplitude information, the cross-block covariance be-
tween orthonormal design contrasts and each timepoint at each
electrode in the ERP dataset was used.

Singular value decomposition.Singular value decomposition
~SVD! was conducted on the cross-block covariance matrix~Fig-
ure 1B!. SVD re-expresses the cross-block covariance matrix as a
set of orthogonal singular vectors orlatent variables~LVs!, the
number of which is equal to the number of contrasts. The LVs are
analogous to eigenvectors in PCA, and account for the covariance
in the matrix in decreasing order of magnitude. This magnitude is
indicated by a third vector containing thesingular valuesfor each
LV ~eigenvalues!. The singular values are used to calculate the
proportion of cross-block covariance accounted for by a LV.

Each LV consists of a pair of vectors that reflect a symmetrical
relationship between those components of the experimental design
~i.e., the contrasts! most related to amplitude measures on one
hand, and the optimal~in the least-squares sense! spatiotemporal
pattern of ERP amplitudes related to the identified design compo-
nents on the other. The numerical weights at each timepoint0
electrode location combination are calledelectrode saliences
~Figure 1B, far right!. The electrode saliences identify the collec-
tion of timepoints that, as a group, are most related to the design
effects expressed in the LV. Thedesign saliencesindicate the
degree to which each contrast is related to the identified pattern of
scalp amplitude differences.

Additional information obtained from the PLS analysis are
scalp scoresanddesign scoresfor each LV, which are similar to
factor scores. Scalp scores indicate how strongly individual sub-
jects express the patterns on the LV. The scalp scores are the dot
product of subject’s measured amplitudes and the electrode salien-
ces on a particular LV. Although they derive from electrode sa-
liences, we use the term scalp scores rather than electrode scores
to reflect the fact that the value reflects all electrodes. Design
scores are calculated in a similar fashion using the design salien-
ces.~Note that within a condition or task, all subjects will have the
same design score!. Plotting scalp scores for each condition by the
design scores~Figure 1C! provides a visual depiction of the ex-
perimental effect on a LV, showing which conditions are maxi-
mally distinguished.

Mathematical description of partial least squares analysis.
PLS is presently implemented using MATLAB code, and the
following equations describe the procedure. For the analysis of
experimental effects on ERP waveforms, them electrodes, mea-
sured acrosst time points, are made into single vectors for each of
n subjects, who are measured ink conditions ~see Figure 1A!.
Thus, the data matrixM hasn * k rows andm * t columns. A

matrix of orthonormal contrastsC is constructed coding for the
k21 degrees of freedom in the experimental design. The contrasts
are made for each subject soC hasn * k rows andk 2 1 columns.
When the data matrixM is zeroed relative to the grand mean, the
operation:

CT * M0~n * k 2 1!

yields ak 2 1 3 m * t matrix Y containing the covariance of each
time point for each electrode with each contrast inC ~superscript
T represents a matrix transpose!.

Y is then subjected to a singular value decomposition~SVD!:

@USV# 5 SVD@YT# ,

where

U * S * V T 5 @YT# .

From the decomposition,U is anm* t 3 k21 orthonormal matrix
containing the electrode saliences,V is ak 2 1 3 k 2 1 orthonor-
mal matrix of design saliences andS is a diagonal matrix of the
k21 nonzero singular values.~MATLAB code for PLS is available
through anonymous FTP at ftp.rotman-baycrest.on.ca0pub0Randy0
pls0erp_pls!.

Assessment of significance.The arbitrary decisions regarding
the number of LVs to retain~e.g., scree plots! and which of the
weights to consider important are minimized by providing a sta-
tistical assessment of the LVs. This is done using permutation tests
for the LVs and bootstrap estimation of standard errors for the
electrode saliences. The permutation test assesses whether the
effect represented in a given LV is sufficiently strong, in a statis-
tical sense, to be different from random noise. The standard error
estimates of the electrode saliences from the bootstrap tests are
used to assess the reliability of the nonzero saliences on significant
LVs. These two tests are described below.

Statistical significance of each LV was assessed by means of a
permutation test using 1,000 permutations~Braun et al., 1998;
Edgington, 1980; McIntosh et al., 1996!. This was accomplished
using sampling without replacement to reassign the order of con-
ditions for each subject. PLS was recalculated for each sample, and
the number of times the permuted singular values exceeded the
observed singular values was calculated. Exact probabilities are
presented for all LVs. With the use of the permutation test prob-
abilities, the threshold for determining the number of LVs to be
considered can be justified on a statistical basis.

To determine the stability of the maximal electrode saliences
identified on the LVs, the standard errors of the saliences were
estimated through 200 bootstrap samples~Braun et al., 1998;
Efron & Tibshirani, 1986; Fabiani, Gratton, Corballis, Cheng, &
Friedman, 1998!. Bootstrap samples were generated using sam-
pling with replacement, keeping the assignment of experimental
conditions fixed for all subjects. PLS was recalculated for each
bootstrap sample. A salience whose value depends greatly on
which subjects are in the sample is less precise than one that
remains stable regardless of the sample chosen~Sampson, Streiss-
guth, Barr, & Bookstein, 1989!. The ratio of the salience to the
bootstrap standard error is approximately equivalent to az score if
the normality of the bootstrap distribution is valid~Efron & Tib-
shirani, 1986!. Those timepoints where the salience was greater
than twice the standard error are indicated above the plots of the
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electrode saliences. The primary purpose of the bootstrap is to
determine those portions of the ERP waveforms that show reliable
experimental effects across subjects; thus no corrections for mul-
tiple comparisons is necessary because no statistical test is per-
formed. The statistical assessment is done through permutation
tests applied at the level of the full spatiotemporal pattern, as
described above.

To summarize, thesignificanceof each LV is determined from
permutation tests, and thereliability of the contribution of each
nonzero electrode salience is then determined using bootstrap
estimates of the salience standard errors.

Interpretation of PLS results.As described above, the PLS
analysis provides pairs of patterns defining experimental differ-
ences in the recorded waveforms. Figure 2 contains simplified
results from a PLS analysis. We show how the pieces would be put
together for a single electrode from a two-condition experiment
~based on a 31-electrode simulation!. In the top panel, two grand
average ERP waveforms are plotted, clearly showing Condition 1
latency is longer than Condition 2 latency for the early peak
~points 10 to 25!. Note that some small differences are also visible
during the slow-wave portion of the waveforms.

Following a significant statistical assessment using permutation
tests, the pattern expressed on the LV can be examined. This starts
with inspection of the scalp scores and design scores~Figure 2,
middle panel!. The pattern of scores indicates that Condition 1
amplitudes are generally higher~positive scores! than Condition 2
amplitudes~negative scores! across the whole head. To identify
this pattern of amplitude differences, the electrode saliences~Fig-
ure 2, bottom panel! are examined in relation to the grand aver-
ages. Saliences greater than zero indicate portions of the waveform
where Condition 1 amplitude is higher than Condition 2 amplitude.
Saliences less than zero indicate that Condition 1 amplitude is
lower than Condition 2 amplitude. The strongest saliences are for
the timepoints at the first peak. They perfectly map onto the
latency shift seen in the grand averages: saliences are negative
from points 10 to 15, and positive from points 16 to 21. The
bootstrap results indicated that nine of these amplitude differences
were reliable across subjects~solid marks at the bottom of the
plot!.

Figure 2 also illustrates that small saliences can be identified by
PLS. The onset of the slow wave is somewhat earlier in Condi-
tion 2, and there are some fluctuations at the end of the recording.
Those deviations are reflected in the saliences as belonging to
the pattern discriminating the two conditions. However, only
small portions of those timepoints were stable by bootstrap~open
marks at the bottom of the plot!. When small stable findings such
as these are due to artifact or random noise, they are typically
associated with a single electrode or few timepoints. In most cases,
the pattern of electrode saliences extends across multiple electrode
sites. If so, the pattern would be interpreted to mean that the
differences between Condition 1 and Condition 2 were due to a
large latency shift at the first peakcombined withsmall amplitude
differences later in processing. The electrode saliences can be used
then to identify new time periods or electrode locations for exam-
ination with more traditional analyses of latency and amplitude,
eliminating guesswork regarding the significance of waveform
differences. More importantly, PLS provides a scalp-wide assess-
ment of amplitude differences, and can indicate that multiple
differences in waveform amplitudes are related to experimental
manipulations.

Simulation Datasets
Source waveforms.The data consisted of three, 65-point sources
set along the midline~Figure 3A, B!. The Brain Electromagnetic
Source Analysis~BESA 2.2! software package was used to sim-
ulate the ERP and autocorrelated noise data for a full scalp
topography containing 33 data channels. The simulated epoch
began with an initial 11-point period with no systematic ERP
activity, followed by Source 1~points 12–20!, Source 2~points
21–36!, and Source 3~points 21–65!. Source 1 reached its
maximum at point 16, and returned to zero at point 20, before
the onset of Sources 2 and 3. Sources 2 and 3 began at the
same time. Source 2 peaked at point 29, and had returned to
zero at the point where Source 3 reached its maximum~point
36!. The maximal amplitude of Source 3 persisted over the
remainder of the epoch. The dipoles for the three sources~Fig-
ure 3A! were set to an eccentricity of 40%; Source 1 was
maximally distributed over the frontocentral region~theta2608,
phi 2908!; Source 2 was maximally distributed over the parietal
region ~theta 408, phi 2808!; and Source 3 was maximally
distributed over the fronto-polar region~theta2608, phi 2908!.
The noise-free fundamental topography is presented in Fig-
ure 3C for 9 of the 33 channels.

Figure 2. Interpreting PLS results. A: Grand average waveforms for two
conditions at one electrode. B: If the latent variable is significant, scalp
scores are plotted. This identifies the contrasts among conditions. C:
Electrode saliences identify the timepoints where the contrast is strongly
expressed. Reliable saliences by bootstrap are indicated at the bottom of
the plot.
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Experimental effects.Six experimental conditions were con-
structed for 20 simulated subjects. The first two conditions~B1
and B2! represented baseline conditions reflecting the initial val-
ues for the three sources. To generate these conditions, amplitude
values for each source were selected from a Gaussian distribution
~M 5 200,SD5 50!. The third condition reflected a doubling in
the amplitude of Source 1~S1a!, selected from a Gaussian distri-
bution~M 5 400,SD5 50! for each subject. The fourth condition
~S1al ! reflected both a doubling of the amplitude of Source 1
~M 5 400,SD5 50! and a 25% decrease in its onset latency~on
average from point 12 to 8!. The fifth condition was a doubling of
the amplitude of Source 2~S2a, M 5 400, SD 5 50!. The sixth
condition ~S2aS3a! simultaneously increased the amplitude of
Source 2~M 5 400, SD 5 50! and decreased the amplitude of
Source 3~M 5 100, SD 5 50!. The inclusion of this condition
permitted a consideration of whether PLS could separately identify
these two sites of changing activity. Where no experimental effects
were modeled, any differences between conditions resulted from
chance variation.

Subject variability.Between-subject temporal jitter in source
activity onset was accomplished by varying the onset latency of
the sources for each of the 20 simulated subjects. The onset latency
was based upon a Gaussian distribution~M 5 0, SD5 5! and this
value was added or subtracted from the fundamental source activ-
ity onset. For Sources 1 and 2, the termination of the source was
also decreased or increased by the same amount. This was not
necessary for Source 3, as its activity persisted over the epoch. The
individual simulated subject source-onset points were maintained
across all simulated experimental conditions.

Spatially and temporally autocorrelated noise, designed to re-
flect ongoing EEG, was also simulated. The BESA regional-source
model~RS4.par! was chosen, with four sources placed in the left
and right anterior and posterior quadrants. The same noise level

was used for each of the 12 dipoles making up the regional
sources, and was based upon a Gaussian distribution~M 5 2.5,
SD 5 1.25!. The noise level was maintained for each simulated
subject across the six simulated conditions, and unique noise was
generated for each condition. Spatially and temporally uncorre-
lated noise, designed to reflect artifact arising from recording
equipment and other nonbiological sources, was simulated using a
random numbers generator~M 5 0, SD 5 0.5!. As with the
autocorrelated noise, separate noise files were generated for each
simulated subject and condition. The uncorrelated noise files were
average referenced to meet the convention of BESA before adding
them to the autocorrelated noise and source waveform files.

Subject data files were constructed by adding the appropriate
unique autocorrelated noise file and uncorrelated noise file to the
source waveform file for each subject in each condition. For
plotting convenience, two lateral electrode positions in the simu-
lation montage were dropped from the dataset~FC5, FC6!, leaving
31 channels for analysis.

Design of simulations.Two simulations with four experimen-
tal conditions in each were generated by selectively combining
the six different experimental effects. Baseline 1~B1! and Base-
line 2 ~B2! were included in each of the simulations to reflect
situations where an experimental manipulation does not result in
ERP differences. The remaining two conditions in each simula-
tion reflected experimental effects on ERP amplitudes. In Sim-
ulation 1, the experimental effects were restricted to Source 1.
Here we incorporated an amplitude increase in one condition
~S1a! and a combined amplitude increase and latency decrease
in another~S1al !. For Simulation 2, effects at temporally over-
lapping sources were examined. This simulation examined an
amplitude increase at Source 2~S2a! in one condition, and the
combination of a simultaneous amplitude increase at Source 2
and decrease at Source 3 in another~S2aS3a!.

Figure 3. Simulation data. A: Location and orientation of dipoles. All three sources were placed along the midline. B: Source
waveshapes corresponding to each dipole. C: Scalp topography for the baseline condition for 9 of 29 electrodes. Note that Fc1 and Fc2
show effects from Source 1 and Source 3 activity, whereas Cz shows primarily effects from Source 1 and Source 2 activity. All other
electrodes express some combination of all three sources.
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PCA
As the primary expression of the source activity was at the midline,
temporal PCA was conducted on three midline electrodes from
Simulation 2~Fz, Cz, and Pz!. The columns of the data matrix
were the 65 timepoints, with electrodes and conditions for each
subject represented in the rows. SVD was applied to the 653 65
covariance matrix. PCs explaining the first 95% of the covariance
matrix were retained for further analysis.

The significance of the PCA results was assessed in two ways.
First, for each retained PC, scores for each experimental condition
were created for each subject, averaged across electrodes. Signif-
icant differences among the score means were identified by paired
t tests~corrected for multiple comparisons,pcrit 5 .008!.

Permutation tests were also conducted on this dataset. This
allowed us to use the same statistical criteria to compare the PCA
results with that of PLS. The statistic assessed on the PCA results
was theR2 obtained from regressing a set of orthonormal design
contrasts on the PCs from the permuted datasets. PCs having anR2

probability less than .05 were considered to be significant. Boot-
strap estimates for the component weights were also generated to
identify which timepoints on the PC reflected stable factor loadings.

Actual Event-Related Potential Data
Participants and design.Data from two single-feature conditions
in a feature-conjunction auditory-oddball paradigm were used to
assess PLS in actual ERP data. Participants were 14 young adults
~236 4 years, 8 females! who were participating as controls for a
larger patient study. Participants attended to loudness-matched
tones~e.g., 500 and 1500 Hz, 100-ms duration with 5-ms rise0fall
time! presented randomly to left or right ear via headphones. In
separate blocks, the target dimension was either pitch~high or low!
or location ~left or right ear!. Target dimension was counterbal-
anced across participants. In both conditions, 720 trials were pre-
sented, and targets occurred on 25% of all trials~n 5 180!.

Hits were defined as button presses between 200 and 1,000 ms
after target onset. Correct rejections were defined as “no response”
200 to 1,000 ms following a distractor. False alarms were button
presses occurring outside the hit window. Misses corresponded to
no response between 200 and 1,000 ms after target presentation.

ERP recording.The electrophysiological signals were digitized
continuously~256 Hz sampling rate per channel; bandpass 0.15–
40 Hz! from 32 electrodes using NeuroScan Synamps and software
~v. 3.1!, and archived for off-line analysis after each session. Eye
movements were recorded with electrodes at the outer canthi and
at the superior and inferior orbit. All electrodes were referenced to
Cz during the recording; the data were re-referenced to an average
reference off-line and digitally filtered using a 32 Hz lowpass
filter.

ERP analysis.Before averaging the ERPs, the ocular artifacts
associated with blinks were corrected using an ocular source com-
ponent approach~NeuroScan!. Averaging occurred off-line, fol-
lowing the computerized automated rejection of trials contaminated
by excessive peak-to-peak deflection, or amplifier saturation~6100
mV !. The epoch included a 200-ms prestimulus baseline and 800-ms
poststimulus. In each condition, the ERPs were averaged sepa-
rately for hits, correct rejections, false alarms, and misses.

For the PLS analysis, subject grand averages for hits and
correct rejections from 28 electrodes were used~the four eye
movement channels were not included!. The epoch analyzed con-
sisted of 205 timepoints starting at stimulus onset~0–800 ms!.

Results

Simulation 1: Latency and Amplitude Effects at a Single
Source
The grand averages from the four conditions~B1, B2, S1a, and
S1al ! are shown in Figure 4A~9 of the 29 electrodes are plotted!.
The first and second LVs accounted for 67.1% and 31.1% of the
cross-block covariance matrix, respectively, and both were signif-
icant by permutation test~ p5 .00!. The third LV accounted for the
remaining 1.8% of variance, and was not significant~ p 5 1.00!.

LV1. Plots of the scalp scores by design scores for LV1 are
shown in Figure 4B, left panel. The values for the design scores
~DS! indicate the primary distinction on this LV was between the
S1al ~DS 5 10.19! condition and the other three conditions
~DS , 20.06!. The electrode saliences for this LV~Figure 4C,
thick lines!, indicate the direction and the magnitude of the dif-
ferences, simultaneously at all scalp locations. To reiterate, the
electrode saliences simply indicate which timepoints and elec-
trodes showed amplitude differences related to the contrast shown
in the design scores. The deflections should not be interpreted as
separate waveform components.

Visual inspection of the saliences indicates the ERP differences
were restricted to those timepoints where Source 1 was active. The
shape of the saliences identifies both shorter latency~positive
followed by negative saliences! and the increased amplitude~stron-
ger positive saliences than negative! in condition S1al relative to
the other three conditions. This pattern was expressed most strongly
at frontal and central electrodes. The nonzero saliences stable by
bootstrap are indicated at the top of each of the plots. The bulk of
the stable timepoints were located in the 10 to 20 point range,
consistent with the simulation. Thus, the experimental effect of a
combined increase in amplitude and latency shift at Source 1 was
depicted by a reversal of the saliences within the time period the
source was active.

LV2. Plots of the scalp scores by design scores for LV2 are
shown in Figure 4B, right panel. The design score weights indi-
cated the primary difference was between the S1a condition~DS5
10.18! and the two baseline conditions~DS 5 20.07, 20.11!.
Note the weights for the S1al condition were very close to zero
~DS5 20.01!, indicating its contribution to this LV was minimal.
Although the saliences for this LV~Figure 4C, thin lines! resemble
a “peak,” what they indicate is that the amplitude in the S1a
condition was higher than in the baseline conditions. The topog-
raphy of the saliences matched the topography for Source 1, and
the bootstrap results indicated the effect was most stable between
points 10 to 20.

In summary, the PLS on this dataset distinguished the two
experimental effects. The strongest effect was the combination of
an increase in amplitude and a latency decrease in condition S1al.
Any experimental manipulations that produce combined amplitude
and latency differences will have a shape that resembles LV1. If
both aspects are reliable by bootstrap~as in the present simulation!,
then one can confidently claim the two effects occurred. The
second LV identified the second experimental effect, the increase
in amplitude in condition S1a. At all other timepoints, the saliences
were essentially zero, indicating the other peaks in the recorded
waveform did not differ among conditions.

Simulation 2: Spatiotemporal overlap
The grand averages for the four conditions~B1, B2, S2a, and
S2aS3a! are shown in Figure 5A. Due to the orientation of the
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sources, the scalp potentials from Source 2 and Source 3 also had
spatial overlap at most electrode sites~cf. Fz, Pz!. However, this
overlap did not occur at Fc1 and Fc2, where only effects of Source
3 were expressed, nor at C3, Cz, and C4, where ERP differences
related to Source 2 activity were expressed.

The first and second LVs accounted for 84.1% and 14.9% of the
cross-block covariance matrix, respectively, and both were signif-
icant by permutation test~ p5 .00!. The third LV accounted for the
remaining 1.0% of variance, and was not significant~ p 5 .34!.

LV1. The S2aS3a condition consisted of two simultaneous
effects, an increase in amplitude of Source 2 and a decrease in
amplitude of Source 3. This contrasts with the single effect in

condition S2a, which had only the increased amplitude at Source
2. It would be expected that the experimental effect differing the
most from the two baseline conditions would be the S2aS3a
condition. Plots of the scalp scores by design scores for LV1,
shown in Figure 5B, left panel, indicated a more complex pattern
of differences among conditions, but supported this expectation.
The design scores showed strong positive weights for the S2aS3a
condition~DS 5 0.16! and equal, strong negative weights for the
two baseline conditions~DS5 20.11!. This indicated the primary
difference being expressed on LV1 was between the S2aS3a con-
dition and the two baseline conditions. However, the positive score
for the S2a condition~DS 5 0.06! indicated it also differed from
baseline. Because PLS groups similar differences together, LV1

Figure 4. Simulation 1: Latency and amplitude effects at a single source. A: Grand averages for 9 of 29 electrodes. Both effects are
clearly seen in the S1al condition~_ _ _!, while the S1a condition~_ _! contains only the increased amplitude. B: Left panel: Scatterplot
of scalp scores by design scores for LV1. The weight of the design scores for each condition can be used to identify the contrasts being
expressed on the LV. LV1 design scores indicates the S1al condition ~*! is different from the other three conditions. The overall
positivity of the scalp scores in the S1al condition indicates the electrode saliences are likely to be mostly positive. Right panel:
Scatterplot of scalp scores by design scores for LV2. The weight for the S1al condition~*! is zero, indicating it is not contributing to
this contrast. Thus, this LV is contrasting the S1a condition ~1! with the baseline conditions~3,C!. The effect is largest for the
difference between the S1a condition and the second baseline condition. This reflects small differences between the two baseline
conditions resulting from the random assignment of peak amplitudes. C: Electrode saliences for LV1~

_
! and LV2 ~_!, rescaled by

the LV singular value. Stable peak saliences are identified at the top of each plot for LV1~d! and at the bottom of each plot for LV2
~l!. For LV1, the saliences identify latency and amplitude effects, expressed most strongly at the frontal electrodes. The weights are
primarily positive, which when combined with the positive loading on the LV1 design scores, correctly identifies the increased
amplitude and shorter latency in the S1al condition. For LV2, the peak saliences are also positive, again indicating a positive relation
with the design contrasts. This correctly identifies the higher amplitudes in the S1a condition compared to the baseline conditions.
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indicated that the S2aS3a and S2a conditions shared some com-
mon differences from the baseline conditions~that is, the ampli-
tude effect at Source 2!.

The pattern for the electrode saliences for this LV reflected this
combination of differences among conditions~Figure 5C, thick
lines!. Interestingly, where Sources 2 and 3 combined at the scalp,
both signals were incorporated into the LV. Where the sources had
little or no overlap~e.g., Cz for Source 2, Fc1 and Fc2 for Source
3!, the saliences reflected effects of the single source.

The strongest saliences were associated with the increased
amplitude of Source 2 from points 20–36. These were seen as
positive saliences at the posterior electrodes~e.g., Pz!, which
reversed at frontal-polar sites~not plotted!. The remaining portions
of the electrode saliences reflected differences in the slow wave. At
electrodes where the recorded scalp activity reflected activity from
Source 3 but not Source 2~Fc1, Fc2!, PLS identified the experi-

mental effect at the slow wave. As the design scores were positive
for the contrast between the S2aS3a and baseline conditions
~S2aS3a , baseline!, the negative saliences for these points indi-
cated the effect of the decreased amplitude at Source 3.

LV2. The scores for LV2 are shown in the right panel of
Figure 5B. As for LV1, the scores for LV2 present a complex
picture. The primary distinction was between the S2a ~DS5 20.19!
and S2aS3a ~DS 5 0.12! conditions, which at the level of their
sources, differed only in the slow-wave amplitude at Source 3.
However, the scores for the two baseline conditions were also
positive~DS5 0.03!, indicating they were also different from the
S2a condition. This pattern of scores suggested that this LV in-
dexed differences between S2aS3a and S2a as well as similar
differences between the S2a condition and the baseline conditions
that were not accounted for in LV1.

Figure 5. Simulation 2: Experimental effects at sources with spatiotemporal overlap. A: Grand averages. The increased amplitude at
the second peak in the S2a condition ~_ _!, and the combined effect of increased amplitude at Source 2 and decreased amplitude at
Source 3 in the S2aS3a condition ~_ _ _! are shown. B: Left panel: Scatterplot of scalp scores by design scores for LV1. The largest
discrimination on this LV is between the S2aS3a condition~*! and the two baseline conditions~3,C!. This LV also indicates that the
S2a condition ~1! differs from the two baseline conditions. Right panel: Scatterplot of scalp scores by design scores for LV2. The
largest discrimination on this LV is between the S2aS3a condition~*! and the S2a condition~1!, with additional contributions from
the difference between the two baseline conditions~3,C! and the S2a condition~1!. C: Electrode saliences for LV1~_! and LV2~_!,
rescaled by the LV singular value. Stable peak saliences are as in Figure 3. For LV1, the saliences indicate stable peak effects at the
second peak and at the slow wave. For LV2, the effects are also expressed at the second peak and at the slow wave, but the relationships
are reversed for the second peak. As was seen in the grand means, Fc1 and Fc2 only show stable saliences in the slow wave, whereas
C3, C4, and Cz show strong saliences only at the second peak. All other electrodes reflect the combination of ERP amplitude
differences.
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The electrode saliences for LV2, shown in Figure 5C~thin
lines!, reflected a combination of differences at the second peak
and during the slow wave. The negative saliences at the central
electrodes, taken with the negative design scores for the S2a
condition, identified the modeledincreasedamplitude in S2a rel-
ative to the baseline conditions~e.g., points 22–37 at Cz!. The
centroparietal and parietal electrodes expressed a combination of
effects: negative saliences during the second peak, and positive
saliences during the slow wave. The frontal electrodes expressed
differences primarily reflecting the slow-wave activity.

This again demonstrates that when multiple effects in the scalp
amplitudes define differences among experimental conditions, the
LV will contain those multiple effects. When the topography al-
lows a dissociation of those effects, they can be identified on the
plots of the saliences, offering a suggestion to the researcher that
sources with different scalp topography may be responsible. Inter-
estingly, note that the saliences for LV1 and LV2 at all electrodes
were essentially identical during the slow-wave time period. We
interpret this to indicate the differences between the S2aS3a con-
dition and the two baseline conditions~the primary distinction on
LV1! were of the same magnitude as the differences between the
S2aS3a and S2a conditions~the primary distinction on LV2!.

Comparison with PCA
To determine if temporal PCA and PLS would produce similar
conclusions, data from three midline electrodes~Fz, Cz, Pz! from
Simulation 3 were analyzed with both techniques. The findings for
the PLS analysis on the reduced dataset were equivalent to those
shown in Figure 5C for the full dataset. The first two PCs ac-
counted for 93.9% and 5.7% of the covariance matrix, respec-
tively. Only the first two PCs were significant as assessed by
permutation tests, and are shown in Figure 6A and B.

Because PCA solutions are not constrained to identify a par-
ticular source of variance, they may reflect differences or com-
monalities among conditions, or some combination of these effects.
This was evident in PC1, where effects from all three sources can
be seen~Figure 6A!. Comparisons of the scores for PC1 indicated
the baseline conditions~M 5 20.65,20.66! differed from the two
experimental conditions~M 5 1.74 for S2a and M 5 2.78 for
S2aS3a! and the two conditions differed from each other. Boot-
strap estimates of the PC weights, plotted under the PC, indicated

all nonzero timepoints after point 16 were stable. This included the
weights associated with Source 1 activity. PC2~Figure 6B! indi-
cated effects resulting from amplitude differences in Source 2 and
Source 3. As for PC1, the two baseline conditions~M 5 5.87, 5.93!
differed from the two conditions with added effects~M 510.16 for
S2a and M 5 8.72 for S2aS3a!, and the two conditions with
effects differed from each other. Bootstrap estimates indicated that
all points after point 21 were stable.

The shape of the second PC was most similar to the PLS
results, in that it only identified differences during the second peak
and the slow wave. However, the statistical comparison of the
scores for both PC1 and PC2 indicated significant differences
among conditions. Thus, the experimental effects would have been
incorrectly assigned to the early peak as well as to the later peak
and slow wave.

Because the first PC accounted for 94% of the variance, the two
vectors would typically not be rotated. After Varimax rotation
~Figure 6C!, Source 1 activity was seen on both PC1 and PC2.
@This was also true when the third, nonsignificant PC~0.27% of
variance! was included.# Analysis of the scores from the rotated
vectors again indicated significant effects for both PCs. For rotated
PC1, S2aS3a differed from all other conditions, and mapped onto
the modeled differences. For rotated PC2, S2a and S2aS3a dif-
fered from the two baseline conditions, but not from each other.
The point here is that although rotation extracted the modeled
experimental manipulations as simple effects, some of that differ-
ence would be attributed to amplitude differences during Source 1
activity, where no differences were modeled.

Actual ERP Data
Analysis of the behavioral measures indicated performance was
similar in the location and pitch conditions. For the location con-
dition, the proportion of hits~SD! was 97%~2.5%!, and the mean
number of false alarms was 3.6~2.5!, and mean reaction time was
327 ~49! ms. In the pitch condition, the mean number of hits was
98%~1.6%!, with a mean of 3.2~2.1! false alarms, and 313~38! ms
mean reaction time.

The grand averages for ERPs in the four conditions for the
auditory oddball task are presented in Figure 7. Visual examination
of these data identified a large positive deflection from 200 to
600 ms, most strongly expressed at Pz in the two hit conditions

Figure 6. Simulation 3: Temporal PCA results. Points stable by bootstrap are indicated below the waveform~l!. A: PC1 accounted
for 93.9% of the covariance and reflected effects at all three peaks. B: PC2 accounted for 5.7% of the covariance and reflected effects
related to the second peak and the slow wave. C: Results of varimax rotation of the first two principal components. Rotated PC1
reflected effects at the first and third peaks; rotated PC2 reflected effects at the first and second peaks.
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compared to the two correct rejection conditions. Additionally,
there were differences at 100 ms at a number of electrodes, and
slow-wave differences after 400 ms at frontal and posterior elec-
trodes. The goal of the PLS analysis, then, is to identify that
particular combination of scalp amplitudes related to specific dis-
tinctions among the four conditions. The full sweep from 0 to
800 ms was analyzed, and three Helmert contrasts were used to
create the covariance matrix. The first LV accounted for 92.5% of
the cross-block covariance, and was significant by permutation test
~ p 5 .000!. The second and third LVs accounted for 6.8% and
0.7% of the cross-block covariance, respectively, but were not
significant~ ps5 .714; 1.00!, so they were not considered further.

LV1. The design scores~Figure 8A!, indicated the primary con-
trast in this dataset was between the two correct rejection condi-
tions~DS5 20.13! and the two hit conditions~DS. 10.11!. The
smaller range in scalp scores for the correct rejection conditions
indicated the ERP amplitudes were more similar among subjects in
those two conditions compared to their ERP amplitudes in the two
hit conditions.~Examination of the scalp scores can also be used to
identify potential outliers.! A combination of factors may have con-
tributed to the differences in variability between hit and correct re-
jection scores. First, there were fewer target trials compared to
nontarget trials~180 versus 540!. Secondly, it is likely that the ERPs
to target stimuli reflected not only the perceptual response to the
deviant stimulus, but also some aspects of the preparation and ex-
ecution of the motor response.

The electrode saliences are shown in Figure 8B, with stable
peak saliences based on bootstrap at the top of each electrode plot.
Positive electrode saliences indicated that the difference expressed
on this LV was stronger amplitudes to hits compared to correct
rejections. The pattern of electrode saliences indicated that a com-
bination of differences in scalp potentials distinguished hits and
correct rejections. The strongest saliences were at those electrodes
expressing the P300 effect~i.e., Pz, P3, P4, and C4!. The bootstrap
results indicated these saliences were stable for a large portion of
the 200–600 ms time period at those electrodes. The early peak at
100 ms also showed stable saliences across the head. These sa-
liences were positive at the back of the head and negative at the
front of the head, and the shape of the saliences indicates an
amplitude difference, which is confirmed by examining the grand
averages~e.g., T5!. The magnitude of this difference was some-
what larger on the left than the right side~e.g., T5, Ma1 versus T6,
Ma2!. Differences were also seen for the second early peak at
150 ms at O1, Oz, and O2, and at P3, Pz, and P4. Slow-wave
saliences were stable for the central and right posterior as well as
right temporal electrode sites~e.g., Iz, Cb2, Ma2, and Ft10!, but
this effect was not as strong at frontal electrodes~Fp1, Fpz, and
Fp2!. The late negativity~.700 ms! at left temporal sites in the hit
conditions was also identified~Ft9, T3, T5, Ma1!.

LV2. This LV was not significant by permutation test, and
we are commenting on those results only to demonstrate that
PLS can be used to discount apparent differences in the wave-

Figure 7. Grand averages for actual ERP data: Auditory Oddball task. Targets were distinguished from nontargets based on pitch or
location. Positive is up. Data from four conditions are plotted: Hits for Pitch~_ _ _! and Location~_ _ _!; and Correct Rejections for Pitch
~_ _ _ _! and Location~

_
!.
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forms. The design scores on LV2 indicated the primary differ-
ence was between the two hit conditions. In fact, some differences
between pitch and location hits appear in the grand averages
~e.g., Cz!. However, because this LV did not reach statistical
criterion for significance, we conclude that there are no reliable

amplitude differences when detecting targets based on pitch com-
pared to location in this sample. ANOVA on the amplitude and
latency of the P300 at Pz also indicated no significant differ-
ences between the two hit conditions,F~1,13! 5 0.129 and
0.018, respectively.

Figure 8. PLS results for actual ERP data. A: Scatterplots of scalp scores by design scores for LV1. This LV contrasts the two correct
rejection conditions~1, *! from the two hit conditions~3,C!. Note the tighter clustering of the scalp scores in the correct rejection
conditions compared to the hit conditions, indicating more subject variability on hit trials. B: Electrode saliences for LV1, with stable
peak saliences shown at the top of each plot~d!. This LV expressed a combination of effects across the scalp. The strongest saliences
are seen at the central-parietal electrodes, reflecting the P300 differences. Two different kinds of slow-wave differences were seen, one
at posterior electrodes~e.g., Ma2, Cb2! and the other at frontotemporal electrodes~e.g., Ft9, T3, T5!. Early peak differences at 100 and
150 ms also distinguished hits from correct rejections. This distinction was seen as a single peak at temporal sites and as overlapping
peaks at occipital electrodes.

Spatiotemporal PLS 527



Discussion

This paper introduced the application of the multivariate Partial
Least Squares technique to the full spatiotemporal extent of event-
related potential data. PLS shares some features with other multi-
variate tools, such as PCA, in that it makes use of the singular
value decomposition algorithm to extract information from the
dataset. It differs from PCA in that the solutions are constrained to
reflect the part of the variance in the dataset associated with
amplitude differences due to experimental manipulations. The re-
sulting pairs of vectors~design and electrode saliences! define the
commonalities between the ERP measures and the experimental
design. Additionally, we provide mechanisms to assess the signif-
icance of the LVs as a whole~permutation tests!, and subsequently
assess the stability of the maximal saliences~bootstrapping!. This
type of statistical assessment could equally be applied to PCA
~Braun et al., 1998!.

To show the range of effects PLS can identify, the results of two
simulations were presented, as well as a direct comparison with
PCA. In all cases, the amplitude differences identified by PLS
were restricted to those electrodes and timepoints that reflected the
experimental differences. The first simulation applied two separate
experimental effects to a single peak. PLS separated differences
due to increased amplitude from those due to a combination of
increased amplitude and decreased latency. The second simulation
was designed to demonstrate that PLS identifies differences in the
scalp recordings, rather than differences in source waveforms. In
this simulation, experimental effects were placed on portions of
the waveform where the scalp topographies reflected the temporal
overlap of two underlying sources. Here, the differences identified
by PLS reflected combined effects, rather than singularly identi-
fying the differences in the source amplitudes.

Temporal PCA on this same dataset produced a PC~PC2;
Figure 6B! that had a shape very similar to that of the electrode
saliences identified by PLS. Statistical comparisons of the scores
on PC2 identified the correct set of differences among experimen-
tal conditions. However, PC1 also identified reliable effects~Fig-
ure 6A! that corresponded to all nonzero portions of the waveform
~this was true even when more stringent criteria were applied!. As
no experimental effect was placed on the early peak, this PC likely
reflected some combination of commonalities and differences among
the four conditions. Statistical analysis of the scores indicated that
the two conditions with experimental effects differed from each
other and from the two baseline conditions. Thus, experimental
effects would be incorrectly attributed to all measured peaks.
Varimax rotation of the PCA solution identified the two simple
effects, but did not eliminate the erroneous weights associated with
the first peak.

Application to Actual ERP Data
The subject, electrode, and peak onset variability in the simula-
tion studies was added to the experimental differences to approx-
imate intersubject variability that would be found in actual ERP
data. The simulation studies indicated that PLS was not affected
by this variability. The real power of tools such as PLS is in
their ability to explain differences in actual scalp recordings. We
chose to do this on data from an auditory oddball task, with
large differences between the experimental conditions. These
particular data were part of a larger experiment designed to
extend the findings in the literature by directly contrasting the
effects of attention to pitch with attention to location. As is
typically seen in oddball paradigms, the largest amplitude differ-

ences were between hits and correct rejections at central0parietal
electrodes—the “P300” effect. PLS identified this effect as the
major source of variance in the cross-block covariance matrix
~LV1!, as the electrode saliences were strongest at this time
period. The discrimination between hits and correct rejections
resulted from amplitude differences at multiple scalp locations
and timepoints. Thus, in addition to the differences related to the
P300, PLS identified early amplitude differences at 100 and
150 ms, as well as additional slow-wave differences at 300 to
600 ms, and late effects at 700 to 800 ms. The distinct spatial
topographies of the electrode saliences indicated that multiple
neural sources contributed to the observed waveform differ-
ences. Differences on hit trials when attending to pitch versus
location were not statistically significant~LV2!.

For this initial demonstration, we purposely selected an ERP
dataset with clear distinctions in the waveforms. It is important to
note that PLS would be expected to identify any effect that would
be typically be seen in more traditional analyses of peak ampli-
tudes and latencies. One advantage of PLS is that because all
electrodes are assessed, new information may be obtained that
would not be seen otherwise. A second, and equally important
feature, is that the PLS results indicate which differences in the
ERP waveforms “hang together.” In the present dataset, it would
not be sufficient to describe the results in terms of simple differ-
ences in the P300 or P100 components because the differences
between hits and correct rejections were in fact a combination of
differences at multiple timepoints and electrodes.

The PLS analysis, as presented in this paper, can be consid-
ered to conduct an omnibus test of the major relations between
the experimental design and the measured amplitudes, and as
such, we have used Helmert contrasts to reflect the experimental
design. One of the strengths of PLS is that it is also an excellent
tool for exploratory data analysis~Martens, Izquierdo, Thomas-
sen, & Martens, 1986!, so if one had specific questions regard-
ing relations between task conditions, the design and data matrices
can be generated to address those questions. So, for example,
many ERP effects sensitive to attentional manipulations are seen
in the early peaks. In this case, the researcher may decide to
limit the analysis to this time period. Another question raised in
ERP research concerns laterality effects, in which case the data
and design matrices can be organized to contrast both experi-
mental condition and hemisphere. In fact, there is a suggestion
in the present results that the differences between hits and cor-
rect rejections are more strongly expressed over the left hemi-
sphere. We have conducted PLS analyses on this dataset to
examine both types of questions, and those data will be pre-
sented more fully in a future paper.

Data Considerations
As is the case for any analysis technique, PLS works best when the
data are relatively clean. In situations where there is large vari-
ability within condition across the recorded waveforms~e.g., either
peak amplitudes or latencies!, PLS will be less able to detect
significant experimental effects in the scalp waveforms. This is
likely to be especially true in patient populations. In fact, our first
application of PLS to ERP data was in a study comparing ERP
measures of visual selective attention in two groups of children. A
group diagnosed with Attention Deficit Hyperactivity Disorder
was compared to a group of control children~Lobaugh, Taylor, &
McIntosh, 1997!. The high variability in the patient group pro-
duced results that were difficult to interpret, and stimulated the
current simulation study.
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Relations of Scalp Differences to Source Activity
It has been known for some time that linear decomposition models,
such as PCA, ICA, and SVD, cannot distinguish underlying sources
contributing to separate PCs without added constraints or assump-
tions ~e.g., Borgen & Kowalski, 1985; Sylvestre, Lawton, & Mag-
gio, 1974!. PLS also does not do this. What it does do is identify
distinct combinations of scalp potentials that define contrasts be-
tween two or more experimental conditions. Conceptually, the LV
electrode saliences frequently representweighteddifference wave-
forms, which are assessed statistically and simultaneously. In the
rare case where only one part of the scalp topography differs
between conditions, PLS will identify that single topography. This
was seen in Simulation 1, where the topography accurately re-
flected the activity of a single neural source. In most cases, ERP
differences related to experimental manipulations will be the result
of changes in multiple neural sources. So for example, Simulation
2 contained two experimental effects~S2a and S2aS3a! having
both spatially and temporally overlapping scalp topographies. Any
PLS contrast that simultaneously identified these two effects would
by definition also have electrode saliences expressing these two
topographies. Thus, both LVs reflectedcombinationsof amplitude
effects, and we were able to state that both the slow-wave portion
of the waveform and the second peak were affected by the exper-
imental manipulations.

Extensions and Future Directions
The present simulations and application to real ERP data were
applied to a single experimental group with multiple conditions.
PLS is also applicable to designs where two groups are con-
trasted~Cabeza et al., 1997; Grady et al., 1998; Lobaugh et al.,
1997!. Additionally, if the research questions of interest relate to
the strength of aspecific set of contrasts, these can be used in
lieu of the Helmert contrasts presented here. The only restriction
is that they must be orthonormal. We note though, that any set
of orthonormal contrasts that account for all of the degrees of
freedom will produce the same outcome with PLS~McIntosh
et al., 1996!.

PLS is not restricted to pairwise comparisons, and frequently
the LV results will indicate multiple differences in scalp potentials.
This is problematic only when one wishes to assign a specific part
of the contrasts being expressed~e.g., A. B versus A. C when
the LV indicates A. B . C! to specific segments of the electrode
saliences~i.e., derive component waveforms!. For example, LV1

in Simulation 2~Figure 5! expressed two contrasts. The strongest
effect was the difference between condition S2aS3a and baseline,
with a smaller difference between condition S2a and baseline. We
are currently examining whether further post hoc analysis of the
PLS solutions can be used to separate multiple effects on a LV. One
approach operates on the design scores to determine how strongly
specific aspects of a contrast are expressed on the LV. In this case,
one can regress post hoc contrasts against the design scores to
verify the visual impression of the strength of the effects being
expressed on a LV. This approach has been used successfully in
brain imaging data to distinguish age and delay effects in working
memory~Grady et al., 1998!. The post hoc regression is done as
part of the permutation test, allowing both an assessment of the
significance of the LV as well as hypothesis-driven contrasts.
Another alternative is to conduct a “post hoc” SVD on the LV
saliences to produce separate temporal and electrode saliences.
This approach appears to be most successful when the PLS results
identify single effects such as those found in Simulation 1~Lo-
baugh, West, Taylor, & McIntosh, 1999!. However, the important
feature of PLS as it is presently implemented is its ability to isolate
only those aspects of waveform differences that are related to
experimental manipulations.

PLS can also be extended to examine relations between behav-
ioral responses and scalp potentials, in a fashion similar to that
used by O’Donnell and colleagues~1999! to examine relations
between brain measures and ERP peak amplitudes. In that study,
PLS was used to examine the relations between measures of brain
morphology and the N200 and P300 components of the ERP in
patients with schizophrenia. Peak amplitudes of the N200 and
P300 were identified for each subject, and PLS was conducted on
the two amplitude measures from each electrode, rather than the
full waveform. In this case, PLS would identify those aspects of
behavior~or morphology! that most strongly correlated with the
measured ERPs.

The current paper has described a two-block PLS model, with
design and ERP amplitude as the two blocks under consideration.
Any multiblock path model can be examined using the PLS ap-
proach~Frank & Kowalski, 1985!. The multiblock approach has
been successful in behavioral teratology~Bookstein, Sampson,
Streissguth, & Barr, 1996! and PET brain imaging~McIntosh
et al., 1998!, so the ability to describe simultaneous spatiotemporal
relations among task variables, behavioral responses, and mea-
sured scalp potentials is a very enticing future possibility.
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