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A new protocol is introduced for brain extraction
and automatic tissue segmentation of MR images. For
the brain extraction algorithm, proton density and
T2-weighted images are used to generate a brain mask
encompassing the full intracranial cavity. Segmenta-
tion of brain tissues into gray matter (GM), white mat-
ter (WM), and cerebral spinal fluid (CSF) is accom-
plished on a T1-weighted image after applying the
brain mask. The fully automatic segmentation algo-
rithm is histogram-based and uses the Expectation
Maximization algorithm to model a four-Gaussian
mixture for both global and local histograms. The
means of the local Gaussians for GM, WM, and CSF are
used to set local thresholds for tissue classification.
Reproducibility of the extraction procedure was excel-
lent, with average variation in intracranial capacity
(TIC) of 0.13 and 0.66% TIC in 12 healthy normal and 33
Alzheimer brains, respectively. Repeatability of the
segmentation algorithm, tested on healthy normal im-
ages, indicated scan–rescan differences in global tis-
sue volumes of less than 0.30% TIC. Reproducibility at
the regional level was established by comparing seg-
mentation results within the 12 major Talairach sub-
divisions. Accuracy of the algorithm was tested on a
digital brain phantom, and errors were less than 1% of
the phantom volume. Maximal Type I and Type II clas-
sification errors were low, ranging between 2.2 and
4.3% of phantom volume. The algorithm was also insen-
sitive to variation in parameter initialization values.
The protocol is robust, fast, and its success in segment-
ing normal as well as diseased brains makes it an attrac-
tive clinical application. © 2002 Elsevier Science (USA)

INTRODUCTION

One challenge in the development of intensity-based
algorithms for segmentation of brain MR images is
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that local signal intensity is influenced by system fac-
tors such as scanner and head coil properties (e.g., RF
inhomogeneity, Sled et al., 1998; Clarke et al., 1995), as
well as biological factors such as age (Cho et al., 1997;
Imon et al., 1998; Miot et al., 1995; Steen et al., 1997)
and disease status (Steen et al., 1999; Thatcher et al.,
1997; Laakso et al., 1996; Hirai et al., 1996). One im-
pact of biological factors can be seen clearly in Fig. 1,
where representative T1-weighted intensity histo-
grams for healthy young and elderly and from a patient
with probable Alzheimer’s disease (AD) are presented.
The normal elderly and AD histograms have large ce-
rebral spinal fluid (CSF) compartments compared to
that seen in the young normal histogram. Additionally,
in the diseased brain, the contrast between gray and
white matter is considerably reduced, and the two his-
togram peaks have merged.

We present here a fully automatic, single-channel,
histogram-based approach to discrete segmentation of
brain tissue. The procedure is applicable to a wide
variety of brains because it is robust against variations
in tissue intensities and proportional tissue volumes.
The approach presented here has been optimized for
T1-weighted sequences, where reasonable contrast is
obtained between the three main tissue classes in
brain (gray matter (GM), white matter (WM), and CSF)
with fairly short image acquisition times.

Other single-channel segmentation approaches re-
quire user input or expertise to various degrees, and
can be grouped into two categories based on aspects of
their segmentation strategies. One class of algorithms
uses directly the intensity data contained in the image,
and the other uses an ideal prior segmentation to guide
the assignment of voxels in the image being seg-
mented. Examples of approaches from the first cate-
gory include algorithms that fit Gaussian or polyno-
mial models to the data (Grabowski et al., 2000;
Schnack et al., 2001; Rajapakse et al., 1996), some-
times combined with Markov random field models (e.g.,
Rajapakse et al., 1997; Ruan et al., 2000; Van Leemput
et al., 1999; Held et al., 1997). Atlas- or model-based
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require images to be coregistered to a segmented tem-
plate image (Van Leemput et al., 1999; Ashburner and
Friston, 1997, 2000).

The recent work of Grabowski et al. (2000) is an
excellent example of a Gaussian model approach. The
user initializes the peak intensity for GM and WM, and
the algorithm derives the peak intensity for the CSF
compartment based on an operator-defined region of
interest (ROI). Five Gaussians representing three pure
tissue classes (GM, WM, CSF) and two partial volume
compartments (GM/WM, CSF/GM) are fitted at a local
level and are used to generate either discrete or con-
tinuous segmentations. The primary evaluation of the
algorithm was based on discrete segmentations, and it
performed well in comparison with human experts and
a digital phantom. Although it requires user input, it is
quite robust against minor variations in the initial
parameters.

Gaussian fitting algorithms can be sensitive to noise
in the image, which produces speckled regions in the
final segmentation (e.g., speckles of gray matter within
white matter). To reduce the impact of this noise, and
at the same time enforce tissue smoothness and piece-
wise contiguity, some authors (e.g., Rajapakse et al.,
1997; Ruan et al., 2000; Held et al., 1997; Zhang et al.,
2001; Van Leemput et al., 2001) have suggested the use
of Markov random field models in the segmentation
process. This approach starts from the assumption that
tissues are relatively homogeneous in most brain re-
gions. For example, major white-matter pathways
would not be expected to contain the gray speckles

frequently seen on T1-weighted images. While the spe-
cifics of the approaches vary, the common feature of
Markov random field segmentations is that small, dis-
connected volumes of speckle are reassigned to the
value of the surrounding tissue, restoring the expected
spatial correlation among voxels. In young normal
brains, this approach maintains sharp tissue bound-
aries, while smoothing over small irregularities within
tissue types. It is known that T1 relaxation in the brain
varies regionally (Steen et al., 1997) and is affected by
age. The local discontinuities and changes in signal
variability seen in T1-weighted images may thus re-
flect important biological processes in diseased and
elderly brains. To date, assessments of single-channel
segmentations using the Markov random field ap-
proach have used simulations (Zhang et al., 2001),
phantoms (Rajapakse et al., 1997), or young brains
(Rajapakse et al., 1997; Zhang et al., 2001; Held et al.,
1997) or are restricted to a single brain slice with
specific features (Van Leemput et al., 2001). It is not
clear that the Markov random field approach would be
appropriate in populations whose MR properties vary
substantially from those presented above, and we re-
turn to this issue in the Discussion.

Atlas- or template-based segmentation methods pro-
vide information about the spatial locations of voxels
belonging to various tissue classes, but require the
image of interest to be coregistered to the template
(e.g., Ashburner and Friston, 1997). Both the choice of
coregistration algorithm and the degree to which the
target image matches the template segmentation will

FIG. 1. Global brain histograms of young normal, elderly normal, and probable AD. Note the increased amplitude of the CSF peak in the
elderly and the decreased separation between the gray and the white matter peaks in AD. Images have been masked to exclude nonbrain
tissues.
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contribute to the accuracy of the final segmentation.
Segmentation errors due to miscoregistration are
likely to be small when the images are similar. Sepa-
rate templates would be required in situations of brain
pathology, where anatomy or T1 relaxation can deviate
substantially from the template (e.g., Thompson et al.,
2001).

The fundamental assumption of our approach to tis-
sue segmentation is that a MRI head scan consists of
four distinct tissue classes. These include one nonbrain
class consisting of extracerebral tissues such as skull,
fat, muscle, and dura and three cerebral tissue classes,
namely, gray matter, white matter, and CSF. The ob-
jective was to devise a robust procedure that could be
used to obtain consistent, and plausible volumetric
estimates of brain tissues irrespective of underlying
pathology.

METHODS

MR protocols and participants. All methods de-
scribed in this paper were developed on images pro-
duced on a 1.5 T-Signa scanner (GE Medical Systems).
These images include a T1-weighted acquisition (axial
3D SPGR with a 5-ms TE, 35-ms TR, 1 NEX, 35° flip
angle, 22 � 16.5 cm FOV, 0.859 � 0.859 mm in-plane
resolution, and 1.2- to 1.4-mm slice thickness), a pro-
ton-density (PD), and a T2-weighted acquisition (inter-
leaved axial spin echo with TEs of 30 and 80 ms, 3-s
TR, 0.5 NEX, 22 � 22 cm FOV, 0.859 � 0.859-mm
in-plane resolution, and 3-mm slice thickness). These
images were acquired in the same imaging session
from healthy young and elderly volunteers, or from
patients with probable Alzheimer’s disease (AD) who
were participating in an ongoing research project at
Sunnybrook & Women’s. Informed consent was ob-
tained, and this research was approved by the local
ethics review board.

Image processing. The full procedure consists of
two steps. In the first step (brain extraction), all non-
brain matter is removed, leaving only brain voxels. For
the purposes of this report, “brain” refers to all intra-
cranial voxels (i.e., GM, WM, and CSF) and “nonbrain”
refers to the remaining voxels in the volume. In the
second step (T1 segmentation), all brain voxels are
classified into one of three discrete tissue types: CSF,
GM, or WM.

Brain extraction. The use of T1-weighted images to
create the brain mask was considered and rejected
because most currently available algorithms have been
designed to produce extractions that highlight the cor-
tical surface and thus do not include a substantial
portion of subdural CSF. Our procedure for brain ex-
traction is semiautomatic and uses the PD and T2
images. First, an automatic segmentation algorithm
classifies all voxels into either brain or nonbrain mat-

ter. Because some extracerebral structures will be in-
correctly classified as brain matter, an automatic spa-
tial connectivity algorithm is applied to refine the clas-
sification. The final manual step involves a small
amount of editing of the output.

A typical two-dimensional PD/T2 histogram is
shown in Fig. 2. The automatic segmentation algo-
rithm first defines the upper limit of the intensity
range for each of the two images (lPD, lT2). This limit
was set at the point where the one-dimensional histo-
gram counts fall below 50 voxels (�100 mm3). One
characteristic of PD/T2 histograms is a lightly popu-
lated region (Fig. 2, arrows) that defines a natural
division between brain (tissue_1) and nonbrain voxels
(tissue_0). The next step was to define automatically an
optimal cutoff curve within this region to isolate the
brain voxels, and the use of lines, hyperbolas, and
ellipses were considered for this purpose. In actuality,
the most important factor was the distance from the
histogram origin, and all three methods could be opti-
mized to produce equivalently robust results. For the
present application, an ellipse was implemented, as
seen in Fig. 2. The cutoff ellipse is defined by:

x 2

l T2
2

�
y2

l PD
2

� 0.4.

The value of 0.4 was chosen by inspecting the histo-
grams from a number of PD/T2 pairs that were all
normalized to the same intensity ranges. Figure 3
shows 2D histograms for five young controls (yellow)
and five AD patients (red), all normalized to an inten-
sity range of 800 for PD and 600 for T2. To highlight
that the region is consistent across subjects, and to
make the figure more readable, only two contours are
plotted for each histogram, reflecting lightly populated
(thin lines) and densely populated (thick lines) regions
of the histograms. Because of the considerable lesion
load in the five AD brains, the histograms are not well
aligned at the interface between GM and CSF. All 10
histograms align quite well at the interface of tissue_1
and tissue_0, however, enabling the same cutoff curve
to be used. Furthermore, the general region of the
cutoff ellipse is lightly populated within the histogram
(thin histogram contours), which significantly adds to
the robustness of the cutoff.

Results from the application of this protocol are
shown in Fig. 4A. It is clear that tissue_1 contains more
than just brain in that pieces of scalp and eyes have
been included. To remedy this, we take advantage of
the fact that a band of tissue_0 (e.g., air and dura)
surrounds the entire brain. This allows successful ex-
traction of brain matter alone on most slices, using a
2D-connectivity algorithm based on a seed placed au-
tomatically in the middle of the brain tissue. This
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seed-growing step is accurate on all but a few slices,
where eyes or other extracerebral tissues will remain,
as can be seen in Fig. 4B. For such circumstances, the
image is edited manually to correct these errors (Fig.
4C).

The manual intervention needed is not very compli-
cated, because the errors made by the automatic seed
growing are quite blatant. Consequently, training for
the manual editing is minimal and the need for time-
consuming inter- and intrarater comparisons is re-
duced. The final output of the brain extraction proce-
dure is a binary mask to prepare the T1 images for
segmentation. The full brain extraction protocol, in-
cluding manual editing, requires approximately 10
min on a 256 MHz Sun Spare workstation.

Segmentation. Each PD image was coregistered to
the T1-weighted image using a rigid body transforma-
tion (Automatic Image Registration, v. 3.07, Woods et
al., 1998). The resulting transformation matrix was
used to move the brain mask into the T1 acquisition
space, and all nonbrain voxels were set to zero. The
subsequent T1 histogram smoothly increases from zero
toward the CSF peak (Fig. 5). Should improper brain
extraction occur, the inclusion of nonbrain tissues (e.g.,

dura) will cause the unwanted side effect of a small
hump on the histogram near zero (Fig. 5, arrow).

The T1 segmentation algorithm unfolds in two steps.
First, the normalized global histogram of the prepro-
cessed T1 image is modeled using a Gaussian mixture.
Model parameters are derived automatically, eliminat-
ing the need for user input. If the model parameters
indicate an improper brain extraction (i.e., presence of
a peak below the CSF peak, Fig. 5), a warning is
issued. In the second step, the image is subdivided into
small local regions. The corresponding local histogram
modeling is initialized using parameters from the
global histogram. The localized modeling approach
deals with issues of image RF nonuniformity and in-
trinsic tissue heterogeneity, similar to Grabowski et al.
(2000) and Rajapakse et al. (1996, 1997). The calcu-
lated model parameters are then used to define the
local intensity thresholds for the three tissue types.

The Gaussian mixture model was fitted to intensity
histograms (normalized such that the area under the
curve equals 1) using the Expectation Maximization
(EM) algorithm (McLachlan and Krishnan, 1997), as
outlined by Alder (2001). The EM algorithm is appro-
priate for automatic fitting of T1 histograms because it

FIG. 2. Two-dimensional histogram based on T2 (x-axis) and PD (y-axis) image intensity. Brighter regions represent higher histogram
counts. Arrows indicate the natural break in the histogram separating brain from nonbrain tissues. Dotted line represents the cutoff ellipse
used to isolate brain from nonbrain tissue.
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is quite insensitive to initialization parameters and
has a high rate of convergence (typically less than 100
iterations). The algorithm also adjusts well to large
biological differences in relative tissue amounts. For
example, in a young normal person, roughly 10% of the
total intracranial capacity (TIC) is CSF, while for an
older demented person, that percentage can be as high
as 35%. This flexibility is crucial for fitting the local
normalized histograms, where the relative amounts of
the modeled tissue types vary greatly from one brain
region to another.

Global histogram modeling. A careful investigation
of fitting the global histogram was made with 3-, 4-,
and 5-Gaussian mixture models. The choice of a
4-Gaussian mixture model to fit these histograms was
the only rational compromise between goodness-of-fit

and biological plausibility of the underlying models.
Examples of the results are shown in Fig. 6, where a
fits from a young normal (left), an elderly normal (cen-
tre), and an Alzheimer’s patient (right) are presented
for 3-(A), 4- (B), and 5-Gaussian fits (C). With our T1
protocol, the contrast between CSF and GM is high,
leading to a low goodness-of-fit using the 3-Gaussian
mixture model (Fig. 6A) for all three types of images
(mean square error � 5.7 � 107, n � 10 images). The
mean square errors for 4- and 5-Gaussian models were
better (1.6 � 107 and 7.6 � 106, respectively), forcing a
choice between these two models.

In the 4-Gaussian model (Fig. 6B), there was reason-
able correspondence in all three image types between
the histogram peaks and the modeled peaks for the
three main tissue classes (CSF, GM, WM). This sug-

FIG. 3. Contour plots of 10 2D histograms normalized to the same intensity range. Thin contour lines indicate the histogram
level representing �200 voxels; thick lines indicate �500 voxels. Yellow lines indicate healthy young subjects and red lines indicate AD
patients.
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gests the modeled peaks are consistently reflecting the
MR properties of the tissues. On the other hand, in the
5-Gaussian model (Fig. 6C), the modeled peaks shift
away from their respective histogram peaks. The mag-
nitude of this shift was completely dependent on the
size and location of the mixture classes, which varied
unsystematically across images. This variation in the
behavior of the mixture classes also produced implau-
sible effects in the tissue compartments of interest. In

the young brain, the proportions of tissues assigned to
each of the five classes appeared reasonable, based on
visual inspection. However, all cases, there was a ma-
jor impact on the relationship of the CSF and CSF/GM
partial volume compartments. In the 5-Gaussian
model, the proportion of the histogram modeled as CSF
was reduced by as much as 60%, with a corresponding
doubling of the CSF/GM compartment (proportions for
each class are listed below the corresponding peaks in
Figs. 6B and 6C). More importantly, the partial volume
compartments in the three brains were not modeled in
the same way. In the young normal, the GM/WM com-
partment was small, relative to the GM and WM com-
partments, as would be expected. In the elderly nor-
mal, the two mixture classes were given approximately
equal weight with the GM and WM classes, while in
the Alzheimer’s brain they had equal weights with the
WM class. Given that the integrity of the underlying
tissue is not known, arbitrarily constraining the model
to increase its consistency was not an acceptable op-
tion. Because the 5-Gaussian model shifted the location
of the mean tissue intensities, and unsystematically over-
estimated the two partial volume compartments in the
elderly and diseased brains, the 4-Gaussian model was
selected to maintain the robustness of the algorithm.

Global model fitting using EM algorithm. As an
iterative algorithm, EM requires reasonable initial es-
timates for the model parameters. One new feature of
our procedure is that all Gaussian means (m’s) are
initialized automatically, based on a proportion of the
intensity range.

To implement automatic initialization of the EM al-
gorithm, it was important to identify the consistencies
among images varying in intensity ranges. This was
done by normalizing the images as follows. First, a
number of different scan histograms were rescaled to
the same intensity range. The upper limit of the inten-
sity range, lT1, was defined as the point where the T1
histogram counts fell below 0.02% of the TIC. An ex-
ample is shown in Fig. 7, where 10 histograms are
plotted, all normalized to an intensity range of lT1 �
100. As can be seen in the figure, the rescaled histo-
grams exhibit strikingly consistent locations for the
peak intensities.

Based on the consistency seen across the normalized
histograms, 0.25�lT1, 0.35�lT1, 0.67�lT1, and 0.83�lT1

were chosen as initial values for means of CSF,
CSF/GM partial volume mixture, GM, and WM, re-
spectively. The weight parameters (ws) were initial-
ized by “average” biological amounts of 0.15, 0.05, 0.45,
and 0.35 for CSF, the CSF/GM partial volume mixture,
GM, and WM, respectively. Tissue standard deviations
are consistent in any good imaging system; thus, the
initial values were based on the average standard de-
viations over a few scans (SDs � 7, 3, 12, and 12 for
CSF, CSF/GM, GM, and WM, respectively).

FIG. 4. (A) Initial output from the brain extraction algorithm.
White represents tissue_1 and black represents tissue_0. (B) After
the slice-by-slice seed-growing algorithm is applied, most of the
extracerebral tissue (gray) is removed (arrow). (C) The final stage of
brain extraction requires manual intervention (arrow).
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After automatic estimation of the initial parameters,
the 4-Gaussian model is fitted to the normalized global
histogram (H) as follows:

H�x� � �
i�1

4

wi�
1

�2�*si

� e ��x�mi�
2/2s i

2
,

where wis represent weights, mis represent means, sis
represent standard deviations of 4-Gaussians, and x is
voxel intensity. The total degrees of freedom is 11
because

�
i�1

4

wi � 1.

Local model fitting and segmentation. The 12
global parameter values are used to initialize the fit-
ting of local histograms. Localization is achieved by
restricting the fit to volumes (boxes) of 48 � 48 � 30
voxels. These dimensions achieve a balance between
size and amount of data within each volume. On one
hand, smaller volumes produce better inhomogeneity
correction. On the other, there needs to be sufficient
representation of each tissue class for the 4-Gaussian
mixture model to be applicable.

From the 12 model parameters, only the means for
CSF, GM, and WM are used to calculate intensity
cutoffs for the segmentation. The mean was chosen
because it is less affected by factors such as final box

size (see below) and proportions of tissues in the box,
both of which are determined by the underlying anat-
omy. The cutoffs between CSF and GM (ccg) and the
cutoff between GM and WM (cgw) are defined as:

ccg � �mc � mg�/2

cgw � �mg � mw�/2.

Given a voxel with intensity x, it is segmented as
CSF if 0 � x � ccg, as GM if ccg � x � cgw, and as WM
if cgw � x.

To produce the segmentation, the algorithm tessel-
lates the entire brain image into small boxes, 16 �
16 � 10 voxels in size. Each small box forms the central
core of the larger local box (48 � 48 � 30 voxels) that is
used to estimate model parameters, but only the small
box is segmented. For any two adjacent central core
boxes, two-thirds of the voxels contributing to the pa-
rameter estimates are shared; consequently, the cutoff
values vary from one core to the next in a smooth and
seamless fashion. This box size works well on images
with slices 1.2–1.4 mm thick, and the box size is ad-
justed accordingly if the segmentation is implemented
on images with isotropic voxels.

Local boxes in areas of the brain that are compli-
cated in shape (e.g., cerebellum) may contain too few
data points for reliable convergence of the EM algo-
rithm. If this occurs, the local box is increased in size
(in all three directions) until it contains at least 10,000
brain voxels. Again, the enlarged box is used for model

FIG. 5. Impact of improper separation of brain from nonbrain tissues on the T1 histogram (young normal). Large number of voxels in the
low intensity range (arrow) are seen when dura and other nonbrain tissues are included as part of the brain mask. As these voxels negatively
affect histogram fitting and segmentation results, a warning is issued if they are present.
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fitting, but only the central core of the initial box is
segmented. The T1 segmentation algorithm takes
about 2 min on a 256 MHz Sun workstation.

RESULTS AND VALIDATION

Visual inspection. As part of the development of the
protocol, a set of 10 images of varying image quality
and resulting segmentations was inspected for plausi-

bility by an expert neuroradiologist. In all cases, the
brain extraction and segmentation results were judged
acceptable, irrespective of image quality. However, as
subjective impressions do not provide sufficient quan-
titative assessment, more stringent analyses were ap-
plied and are described below.

Reproducibility of brain extraction. Because reli-
able segmentation requires consistent separation of

FIG. 6. Global scan histograms fitted with a mixture of (A) 3, (B) 4, and (C) 5 Gaussians. Left, young normal; center, elderly normal; right,
probable AD patient. In B and C, numbers below each Gaussian indicate the proportion (weight) for each compartment.
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brain from nonbrain tissues, short-term reproducibil-
ity of the brain extraction procedure was measured on
images from eight young controls (20–30 years) and
four elderly controls (�50 years). Each subject was
scanned twice, with interscan intervals of 15 min to 1
month. One motivation for developing this procedure
was to use it in images from patients. Thus, long-term
reproducibility was tested in a set of 33 AD patients
(50–83 years), with scans 1 year apart. TIC measure-
ments based on the binary brain masks were obtained
from each of the two scans and compared. Intraclass

correlation coefficients indicated good correspondence
in both groups across the two scans (ICCs � 0.999 and
0.998 for controls and AD, respectively). For the short-
term assessment, the average error was 0.13% TIC (	
0.09% SD), which is equivalent to 1.84 	 1.38 mL. For
the AD patients, the average long-term error was
0.66% TIC (	 0.63% SD), or 9.44 	 9.05 mL. The
results here were similar to, or better than, results
based on scans from young adults in other studies
(Lemieux et al., 1999, 0.40% TIC; Suckling et al.,
1999, 0.57% TIC, 8.3 ml; Alfano et al., 1998, 16.3 ml

FIG. 8. Representative misclassified voxels in the MNI digital brain phantom. Blue, CSF misclassified as GM; green, GM misclassified
as CSF; cyan, GM misclassified as WM; red, WM misclassified as GM.
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SD). The choice to define the mask based on the
lightly populated region between brain and nonbrain
thus proves to be robust against intensity variation,
within and across scans. These results indicate ex-
cellent short-term reproducibility in healthy normals
and acceptable long-term reproducibility in elderly
AD patients.

Reproducibility of segmentations. Reproducibility
of the whole procedure (brain extraction plus segmen-
tation) was tested on the repeated scans from the
young and elderly normal controls. Measurements of
total volumes for CSF, GM, and WM were compared.
These results are summarized in Table 1, which shows
volumetric differences of tissue estimates between two
scans, averaged across all 12 subjects. As can be seen

from the table, the maximal differences were less than
1% of TIC in all tissue classes.

To test the reliability of segmentation results within
local regions, a regional analysis was made on the set
of repeated images from five of the normal controls.
The Talairach proportional grid system (Talairach and
Tournoux, 1988) was applied to each brain. This sys-
tem produces 12 large ROIs (6 per hemisphere), de-
fined by a reference system incorporating planes pass-
ing horizontally and vertically through the anterior
and posterior commissures, and sagittally along mid-
line. The anterior–posterior, superior–inferior, and lat-
eral extents of the brain determine the planes that
define the external boundaries of the 12 ROIs. Within
each ROI, the obtained volumes for CSF, GM, and WM
were ratio-adjusted for ROI tissue volume (range, 55–
190 cm3). Across all ROIs, average adjusted tissue vol-
umes on the first scan for CSF, GM, and WM were 14.2,
51.0, and 34.8%, respectively. The scan–rescan results
for this sample indicated no differences for any tissue
compartment (F(1,4) � 0.10). The mean absolute scan–
rescan differences in proportional tissue volume were
2.5, 0.8, and 1.3% for CSF, GM, and WM, respectively.
Thus, this method appears to provide stable estimates
of regional and global tissue volumes.

Accuracy of segmentations. The accuracy of the T1
segmentation algorithm was tested using a simulated
MRI digital brain phantom (Kwan et al., 1999), ob-
tained from the Brain Imaging Center at the Montreal

FIG. 7. Histograms from 10 images rescaled to an intensity range of 100. Solid lines represent histograms from 5 normal young brains;
dotted lines represent histograms from 5 normal elderly brains.

TABLE 1

Segmentation Reliability: Scan–Rescan Absolute
Differences in Global Brain Tissue Volumes

CSF GM WM

cm3 %TIC cm3 %TIC cm3 %TIC

Mean* 3.95 0.30 3.98 0.29 2.49 0.21
SD 2.38 0.20 1.52 0.11 3.05 0.26
Max 7.35 0.66 6.35 0.44 9.40 0.87
Min 0.11 0.01 0.41 0.04 0.17 0.05

* n � 12.
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Neurological Institute (MNI, www.bic.mni.mcgill.ca/
brainweb). The simulated image contained 3% added
noise and 20% RF nonuniformity. The actual noise
level in our images is typically under 2.5% and RF
nonuniformity is typically less than 20%. Before apply-
ing the segmentation algorithm, all nonbrain matter in
the simulated image was removed, using the probabil-
ities provided in the MNI fuzzy model. Since our seg-
mentation protocol classifies only three tissue types,
voxels from the tiny “glial” compartment, less than 6
cm3, were not included. Most of those voxels form a
single layer at the borders of the ventricles. They have
been assigned to GM by others using this phantom
(e.g., Ruan et al., 2000), and our protocol would assign
them to GM as well.

A comparison of total tissue volumes derived from
the segmentation algorithm with “true” tissue volumes
derived from the phantom is presented in Table 2. The
percentages of misclassified voxels, based on true tis-
sue volume, are shown in Table 3. The agreement was
excellent, with errors for all tissue classes less than 1%
of the total volume in the phantom. The errors were
primarily located along tissue interfaces, as would be
expected. This is demonstrated in Fig. 8, where mis-
classified voxels are indicated on a coronal slice of the
digital phantom. Any segmentation based on gray-
scale intensity cutoffs is susceptible to image noise,
which will have the greatest impact along tissue
boundaries. Since noise filtering was not applied, it is
likely that the misclassified voxels are largely intro-
duced by the noise in the image. This is supported by
the relative symmetry of the multiclass Type I and
Type II errors (Table 3; Zhang, 1996).

Robustness. A robust model-fitting algorithm that
has the ability to adjust to large differences in regional
weight parameters is essential. To test this, 1000 ini-
tial parameter values were randomly generated and
the variation in the resulting cutoff values was mea-
sured. The parameters were varied simultaneously
and independently by drawing from independent nor-
mal distributions. Relative to initial parameter values,
weight parameters were varied to 	30%, mean param-
eters were varied to 	10 grayscale units, and standard
deviations were varied to 	3.0 grayscale units. This

large magnitude of erratic variation is unlikely to occur
for actual scans (see Fig. 7 for variability in normalized
global histograms); nevertheless, the resulting varia-
tion for the two cutoffs was quite small. The mean
absolute deviations for ccg and cgw were 0.51 and 0.33
grayscale levels, respectively. Given that the cutoff
values are rounded to the nearest integer, the typical
result was that the cutoff values were not changed. The
maximal effect would be 1 intensity unit, introducing
minimal error on total tissue volume.

DISCUSSION

The protocol is a fast, robust, and reliable technique
for obtaining single-channel tissue segmentations of
brain images. Three features of the protocol distin-
guish it from others in the literature. Perhaps most
importantly, it can be used to segment images that
vary widely in the shape of their global histograms.
Second, we provide a method for automatically initial-
izing the parameters for the Gaussian fitting algo-
rithm, which results in a fully automatic segmentation
protocol. In this present application, the EM algorithm
proved to be insensitive to variation in initial param-
eter estimates. This is a considerable advantage over
some other approaches (e.g., Grabowski et al., 2000;
Rajapakse et al., 1996) that require the user to select
initial values for means (peak intensities, tissue ROIs)
and that are often quite sensitive to initialization val-
ues. Finally, the amount of manual editing required to
obtain the binary brain mask appears to be less than
other methods (e.g., ATOMIA, Ruan et al., 2000). Be-
cause the initial mask is quite good, manual editing is
restricted to obvious errors such as the inclusion of
eyes, resulting in a protocol with high reproducibility
in healthy and diseased brains.

Accuracy of segmentation protocols is difficult to as-
sess; there is no gold standard with which to compare
results. As manual segmentations can be quite unreli-
able (e.g., Pham et al., 2000) and are time consuming,

TABLE 3

Percentage of Voxels Misclassified by the Algorithm and
Error Probabilities

True
classification

Algorithm
misclassificationa

Type I
errorb

Type II
errorcCSF Gray White

CSF — 3.7 0.0 3.7 2.2
Gray 0.9 — 2.1 3.0 4.3
White 0.0 3.8 — 3.8 2.8

a Expressed as the proportion of the true tissue type.
b Probability a voxel from the tissue class is identified as belonging

to another class.
c Probability a voxel from other tissue classes are identified as

belonging to the class.

TABLE 2

Comparison of Segmentation Algorithm Volumes with
Digital Phantom Volumes

Tissue type
MNI

phantom Algorithm

CSF 372,107 (19.1) 367,195 (18.8)
GM 902,924 (46.3) 920,891 (47.2)
WM 674,765 (34.6) 661,710 (33.9)

Note. Data in mm3 (percentage of phantom value).
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the accuracy of the procedure was tested using the
MNI digital phantom. The results were as good as or
better than other published protocols that assessed
accuracy using the phantom (Grabowski et al., 2000;
Ruan et al., 2000; Van Leemput et al., 1999) and that
also obtained reasonable concordance with manual
tracing (Grabowski et al., 2000; Van Leemput et al.,
1999). Ruan et al. (2000) used a 5-Gaussian fitting
algorithm followed by a Markov random field model.
Their coefficient of total agreement at the same noise
(3%) and RF inhomogeneity (20%) levels used here was
0.91 while ours was 0.97. The results here also com-
pared favorably with the test of Van Leemput et al.
(1999), which used 3% noise and no RF inhomogeneity.
Their overlap metrics (described in Zijdenbos et al.,
1994) for GM and WM were approximately 0.94 and
0.93, respectively. In the presence of 20% RF inhomo-
geneity, our overlap matrices were 0.96 and 0.97, re-
spectively. Grabowski et al. (2000) used the same noise
and inhomogeneity values as were used here. In terms
of proportion of misclassified voxels, the present algo-
rithm was more accurate in the GM and WM compart-
ments (3.0% vs 3.75% and 3.8% vs 4.86% misclassified
voxels, respectively), but not in the CSF compartment
(3.7% vs 2.77% misclassified voxels). Not surprisingly,
voxels at tissue interfaces were most susceptible to
misclassification. Visual inspection of the phantom re-
sults suggested these misclassifications were distrib-
uted evenly across the image, and error analysis (Table
3) confirmed this impression.

An extensive assessment of the robustness and reli-
ability of the procedure was also made. The algorithm
used for model fitting was quite stable, thus allowing
automatic parameter initialization. The brain extrac-
tion procedure was robust against differences across
scan intervals of 15 min to 1 year. The segmentation
algorithm was also robust at both the global and re-
gional level. Global scan–rescan differences were
smaller than 1% of TIC, and local differences were less
than 0.15% of TIC.

Other approaches to segmentation. Many recent
segmentation protocols have incorporated explicit seg-
mentation of partial volume mixture voxels and/or
Markov random fields (Ruan et al., 2000; Van Leemput
et al., 2001). These are interesting advances in tissue
classification, but certain assumptions currently re-
quired for these techniques are not valid across the
range of images we are segmenting, and their applica-
tion would introduce more error than would be accept-
able. The two assumptions of interest are, first, that
the boundaries between tissue types are discrete in
most of the brain and, second, that local regional ho-
mogeneity is the norm. We address each below.

The limited resolution and short acquisition times in
typical MR images force a noisy undersampling of local
tissue boundaries, resulting in partial volume voxels at

tissue interfaces. When tissue boundaries are rela-
tively discrete, as is typical in young brains, the behav-
ior of this partial volume band can be simulated and
incorporated into the segmentation scheme to produce
partial volume tissue classes (Van Leemput et al.,
2001). In Alzheimer’s disease, and even in normal ag-
ing, the boundary between areas that can be clearly
defined as GM and WM appears to widen. This results
in an increased number of voxels falling into the “par-

FIG. 9. Segmentation results for young normal brain (top) and
normal elderly brain (bottom). White, white matter; light gray, gray
matter; dark gray, CSF.
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tial volume” intensity range, which are located some
distance from the tissue interface. This reflects biolog-
ical tissue changes rather than the effects of under-
sampling. The focus was to develop a robust method to
identify tissues typically identified by experts as CSF
and gray and white matter and we did not attempt to
model this variance. While we take advantage of par-
tial volume mixtures in the fitting of the Gaussians, we
and others (Ruan et al., 2000; Grabowski et al., 2000)
have used partial volume mixture modeling solely to
aid in the accurate classification of CSF and gray and
white matter, rather than to classify explicitly partial
volume voxels (e.g., Van Leemput et al., 2001; Laidlaw
et al., 1998).

The assumption of local tissue homogeneity is cen-
tral to the application of Markov random field models
in tissue segmentation. In most instances, tissue class
is established, in part, on voxel intensities in local
neighborhoods (e.g., Laidlaw et al., 1998), which re-
quires that tissue intensities be well-separated. In el-
derly normal and Alzheimer’s brains, this requirement
is violated in two ways. First is the appearance of
speckling within white matter, and second is the gen-
eral decrease in contrast between gray and white mat-
ter. The biological source of speckle is not fully under-
stood, although white matter pallor and other changes
have been observed in postmortem specimens (Grafton
et al., 1991; Kitajima et al., 1999). In our algorithm,
speckle in white matter is generally segmented as gray
matter or CSF (see Fig. 9), especially in more severely
diseased brains. We are evaluating the characteristics
of the signal intensities of voxels in white-matter
speckle to determine whether this feature truly reflects
a fourth tissue compartment that can be reasonably
modeled and separately segmented.

SUMMARY

Our protocol is similar to other methods using
Gaussian models, but has certain features that make it
more attractive. The algorithm provides a fast, itera-
tive fit to a 4-Gaussian mixture with no constraints.
The fully automatic segmentation was possible due to
the implementation of a novel, robust initialization
procedure. The protocol presented here produced accu-
rate and stable solutions in a wide spectrum of brain
images. Thus, this protocol is applicable in patient
populations (Levine et al., 2002) as well as in healthy
controls.
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