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Subcortical hyperintensities (SH) are a commonly observed phenomenon onMRI of the aging brain (Kertesz et al.,
1988). Conflicting behavioral, cognitive andpathological associations reported in the literature underline the need
to develop an intracranial volumetric analysis technique to elucidate pathophysiological origins of SH in
Alzheimer's disease (AD), vascular cognitive impairment (VCI) and normal aging (De Leeuw et al., 2001; Mayer
and Kier, 1991; Pantoni and Garcia, 1997; Sachdev et al., 2008). The challenge is to develop processing tools that
effectively and reliably quantify subcortical small vessel disease in the context of brain tissue compartments.
Segmentation and brain region parcellation should account for SH subtypes which are often classified as:
periventricular (pvSH) and deepwhite (dwSH), incidental whitematter disease or lacunar infarcts and Virchow–

Robin spaces. Lesion Explorer (LE) was developed as the final component of a comprehensive volumetric
segmentation and parcellation image processing stream built upon previously published methods (Dade et al.,
2004; Kovacevic et al., 2002). Inter-rater and inter-method reliability was accomplished both globally and
regionally. Volumetric analysis showed high inter-rater reliability both globally (ICC=.99) and regionally
(ICC=.98). Pixel-wise spatial congruencewas also high (SI=.97).Whole brain pvSH volumes yielded high inter-
rater reliability (ICC=.99). Volumetric analysis against an alternative kNN segmentation revealed high inter-
method reliability (ICC=.97). Comparison with visual rating scales showed high significant correlations
(ARWMC: r=.86; CHIPS: r=.87). The pipeline yields a comprehensive and reliable individualized volumetric
profile for subcortical vasculopathy that includes regionalized (26 brain regions) measures for: GM, WM, sCSF,
vCSF, lacunar and non-lacunar pvSH and dwSH.
rology Research Unit, Sunny-
nue, Toronto, Ontario, Canada,
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© 2010 Elsevier Inc. All rights reserved.
Introduction

Subcortical hyperintensities (SH) are frequently observed on T2-
weighted MRI of the aging brain (Jack et al., 2001; Kertesz et al., 1988;
Longstreth et al., 1996). Clinico-pathological correlations suggest
vascular and degenerative origins including: ischemic tissue damage
via arteriosclerosis (Babikian and Ropper, 1987; van Swieten et al.,
1991); vasogenic edema from periventricular venous collagenosis
(Black et al., 2009; Gao et al., 2008; Moody et al., 1995); multiple
lacunar infarcts (Longstreth et al., 1996); état criblé or dilated
perivascular spaces (Awad et al., 1986); demyelination and sub-
ependymal gliosis; amyloid angiopathy (Pantoni and Garcia, 1997);
and clasmatodendrosis (Sahlas et al., 2002).

Although the pathophysiological origins are not fully understood,
the current literature suggests that SH: are common after age 60
(Longstreth et al., 1996); share common cerebrovascular risk factors
such as diabetes and hypertension (De Leeuw et al., 2001; Liao et al.,
1996; Sachdev et al., 2008); and are associated with increased risk of
cognitive decline, stroke, gait disorders and neuropsychiatric dis-
orders (De Groot et al., 2001; Koga et al., 2009; Longstreth et al., 1996,
2005; Srikanth et al., 2009; Vermeer et al., 2003a,b). To further assess
the effects of vascular risk factors in overt and covert cerebrovascular
disease and in dementia, consensus criteria were developed that
underline the importance of accounting for SH in studies on aging
(Hachinski et al., 2006).

Although visual scales can provide quick ratings of SH severity on
MRI (Bocti et al., 2005; Fazekas et al., 1987; Scheltens et al., 1993;
Wahlund et al., 2001), inconsistencies in methodological properties
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(Mantyla et al., 1997) have led some researchers to apply intensity-
based segmentation techniques that provide a more accurate
estimation of SH burden — as well as quantify their extent and
location. However, typical T1-based tissue segmentation techniques
that do not explicitly segment T2 hyperintensities can inflate other
tissue volumes. Depending on the segmentation technique used, gray
matter volumes can be overestimated by failing to segment the
hyperintensities (Levy-Cooperman et al., 2008), see Fig. 7 for example.

Quantitative segmentation approaches have been applied to
capture SH on T2, proton density (PD) and fluid-attenuated inversion
recovery (FLAIR) images. Some of the recent approaches in the last
decade include: fuzzy clustering models that include a lesion class
(Admiraal-Behloul et al., 2005; Gosche et al., 1999); Gaussian curve
fitting to determine lesion intensity cut-off points (Decarli et al., 2005a);
modal intensity cut-offs applied to slice-by-slice intensity histograms
(Jack et al., 2001); k-Nearest Neighbor (kNN) algorithmic combination
approaches (Anbeek et al., 2004; Seghier et al., 2008; Swartz et al., 2002;
Wen et al., 2008); and coregistration to normal templates comparing the
voxel-wise SH probabilities from FLAIR images to a white matter
probability map using a weighting function (Burton et al., 2004; Wen
and Sachdev, 2004). These approaches range from fully automated to
semi-automated labor intensive processes.

Fully automated techniques offer the advantage of high reliability
and are preferable for processing large scale studies. They typically
require FLAIR imaging, where SH are often more conspicuous relative
to standard PD/T2 images. However, FLAIR imaging is less sensitive in
detecting focal thalamic lesions (Bastos Leite et al., 2004; Jack et al.,
2001) and was not included in the multi-center Alzheimer's Disease
Neuroimaging Initiative (ADNI) acquisitions (Jack et al., 2008).
Furthermore, FLAIR imaging alone cannot disambiguate the possible
heterogeneity that is implicated in SH pathology.

In an attempt to address the hypothesis of pathological heteroge-
neity within SH, various subtypes have been suggested for further
segmentation. One common, albeit controversial, distinction is
between periventricular (pvSH) and deep white (dwSH) subcortical
hyperintensities (Decarli et al., 2005a; Sachdev and Wen, 2005).
Although dwSH and pvSH volumes are correlated (Decarli et al.,
2005a), some studies have shown pvSH and dwSH to be differentially
associated with: gray matter atrophy; ventricular dilatation; and
cognitive, behavioral and motor/gait performance (Sachdev andWen,
2005; Sachdev et al., 2005; Silbert et al., 2008).

Lack of a standardized methodology for the definition of pvSHmay
be the cause of inconsistent reports in the literature. The typical
method to distinguish pvSH from dwSH is to create an arbitrary two-
dimensional cut-off line lateral to the ventricles on axial slices in a
slice-by-slice manner. This arbitrary line is sometimes calculated as a
proportional distance from the ventricular border to the dura mater
(Decarli et al., 2005a), or set using an arbitrary voxel distance from the
ventricle out into the centrum semiovale. Some reviewers have
suggested that there may be some neuroanatomic justification for
classifying SH within a 13 mm rim around the ventricle as pvSH
(Mayer and Kier, 1991; Sachdev et al., 2008). Various other methods
arbitrarily delineate pvSH from dwSH using a linear distance
calculation. However, a standardized, unbiased method that recog-
nizes the 3-dimensional nature of SH would be preferable.

Other subtypes of SH include perivascular (Virchow–Robin) spaces
and cystic fluid-filled lacunar-like infarcts. Virchow–Robin (VR)
spaces are CSF-filled extensions of the subarachnoid space in the
sheath surrounding blood vessels. They appear as hyperintense dots
or lines on T2 images, are isointense on PD and typically 1 mm or less
in diameter (Awad et al., 1986). Their size, shape, and differential
appearance on T2 and PD allow them to be distinguished from other
SH subtypes — including lacunes.

Automatic segmentation of lacunes is less common since this
requires coregistration of T2/PD/FLAIR images to a T1-based segmen-
tation, in order to identify CSF intensity within SH. Lacunes are
associated with aging, hypertension, increased risk of stroke, and are
found in 11–28% of elderly (Longstreth et al., 1998; Vermeer et al.,
2003b, 2007). These so-called silent strokes or covert infarcts, are
usually defined as 3–15 mm in diameter, are hypointense on T1, and
hyperintense on both T2 and PD images. Their presence is associated
with increased risk of dementia and have been correlated with
decreased frontal lobe glucose metabolism with positron emission
tomography (PET) imaging (Reed et al., 2004). However, without a
coregistered T1-segmentation and PD-T2 contrast for comparison,
lacunes and VR spaces are difficult to quantify through volumetric
segmentation with FLAIR alone.

An additional benefit of a T1-based tissue segmentation combined
with PD-T2-based SH segmentation is that it allows for relative
volumetric tissue comparisons for gray matter (GM), white matter
(WM), ventricular-CSF (vCSF) and sulcal-CSF (sCSF). However, whole
brain global volumetrics alone provide limited information, and
regionalized quantification, whether ROI-based or template-based,
has become a standard expectation for any MRI-based segmentation
procedure.

Hence, the need for a comprehensive, individualized MRI proces-
sing pipeline that reliably segments the brain into regionalized tissue
compartments and includes the various SH subtypes has become
increasingly important. Lesion Explorer (LE) is the final component of
an MRI-based processing pipeline that was developed with these
considerations. It was built upon updated versions of two previously
published components: an automated T1-based tissue segmentation
protocol (Kovacevic et al., 2002); and the Semi-Automated Brain
Region Extraction (SABRE) parcellation procedure (Dade et al., 2004).
The LE pipelinemakes use of 3 processing components that effectively
allow comprehensive analysis of individual brains through the
segmentation of 8 tissue classes: GM, WM, sCSF, vCSF, lacunar and
non-lacunar pvSH and dwSH — tissue volumes are then parcellated
into 26 SABRE brain regions. Inter-rater and inter-method reliability
data is presented with validation against an alternative kNN
segmentation approach and 2 different visual rating scales.

Materials and methods

Subjects

Images used for this study (n=20) were selected from participants
in the Sunnybrook Dementia Study — a large ongoing longitudinal
observational study conducted in the LC Campbell Cognitive Neurology
Research Unit and the Heart & Stroke Foundation Centre for Stroke
Recovery (http://www.heartandstroke-centrestrokerecovery.ca) at
Sunnybrook Health Sciences Centre, a University of Toronto academic
healthcare institution. See Table 1 for additional details. Exclusion
criteria for this sub-study included: Parkinson's disease or other
neurological diseases other than dementia, history of significant head
trauma, psychotic disorders unrelated to dementia, psychoactive
substance abuse and major depression. Participants in this study had a
historicalprofile typical of ADwith insidiousonset of short termmemory
loss. All patients received a standardized comprehensive clinical
evaluation. The presence of cerebrovascular risk factors was ascertained
including: arterial hypertension, diabetes, hyperlipidemia, and cardiac
disorders such as coronary artery disease. All patients in this study met
National Institute of Neurological and Communicative Disorders and
Stroke–Alzheimer's Disease and Related Disorders Association criteria
for probable or possible AD, (McKhann et al., 1984) and Diagnostic and
Statistical Manual of Mental Disorders — Fourth Edition (American
Psychiatric Association, 1994) criteria for dementia.

MRI acquisition

All brain imaging data was obtained on a 1.5 T GE Signa (Milwakee,
WI) system in compliance with the consensus panel imaging
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Table 1
Demographics and whole brain raw volume lesion data.

Ss Reviewed
Dx

Sex YOE Age Rater 1 SH
volume
(mm3)

Rater 2 SH
volume
(mm3)

Absolute
volume
difference

1 AD M 11 75 2043 2291 248
2 AD+VaD M 15 78 40,961 40,971 10
3 AD+VaD M 16 77 68,456 68,648 192
4 AD M 19 71 4697 4789 92
5 AD+VaD M 17 73 49,267 49,917 650
6 AD+VaD F 12 88 20,696 20,904 208
7 AD F 12 68 4777 4616 161
8 AD+CVD F 8 87 10,152 10,528 376
9 AD+CVD F 13 84 12,053 11,938 115
10 AD+VaD F 14 73 19,900 19,698 202
11 AD+CVD F 17 74 13,986 14,372 386
12 AD+VaD F 10 78 26,317 26,348 31
13 AD M 20 76 8059 8121 62
14 AD+CVD F 19 72 16,920 16,926 6
15 AD F 14 83 2077 2426 349
16 AD+CVD F 17 64 4844 4816 28
17 AD F 12 68 5529 5621 92
18 AD+CVD M 18 76 3710 4318 608
19 AD F 17 79 8981 8382 599
20 AD M 23 66 3725 3927 202

Mean 230.85
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recommendations on VCI (Hachinski et al., 2006). Three image sets were
used: a T1-weighted (axial 3D SPGR: 5 ms TE, 35 ms TR, 1 NEX, 35° flip
angle, 22×16.5 cm FOV, 0.859×0.859mm in-plane resolution, 1.2 to
1.4 mm slice thickness depending on head size), with an interleaved PD
andT2 (interleaved axial dual-echo spin echo: TEs of 30 and80 ms, 3 s TR,
0.5 NEX, 20×20 cm FOV, 0.781×0.781 mm in-plane resolution, 3 mm
slice thickness).

Age-Related White Matter Changes (ARWMC)

A previously published consensus-derived rating scale developed
under the auspices of the European Task Force in Age-Related White
Matter Changes (ARWMC) was used to test the reliability of Lesion
Explorer against an established rating scale (Pantoni et al., 2002;
Wahlund et al., 2001) (reported κ=0.67; group κ=0.89). In brief, the
severity of SH was rated on PD and T2-weighted MR images in five
regions in each hemisphere: frontal, parieto-occipital, temporal, basal
ganglia and infratentorial. SH were accepted if they appeared on both
PD and T2 images and if they were at least 5 mm in diameter. Severity
was graded from 0 (none) to 3 (severe) based on the appearance of
the SH. A measure of global severity was derived by summing the
ratings for the 5 regions.

MRI processing

An overview of the image processing steps is summarized in Fig. 1.
Note that LE is an individualized procedure where each individual's
set of scans is processed singularly and thus group analysis is not a
requirement for this processing pipeline. A trained operator can
process one brain in approximately 1–1.5 h/brain, depending on scan
quality (motion artifacts, image contrast, etc.). The overall MRI
processing pipeline has 3 main components: Brain-Sizer, SABRE, and
Lesion Explorer.

Component 1 — Brain-Sizer
Brain extraction and tissue segmentationwere accomplished using

an updated head-from-brain (HfB) procedure from previously
described methods (Kovacevic et al., 2002; Levy-Cooperman et al.,
2008). In brief, the PD and T2 imageswere coregistered to the T1 using
a rigid body transformation. In early efforts, the transformation was
obtained using the Automated Image Registration v.5.2 (AIR5) and a
ratio image cost function (Woods et al., 1998). However, this was
found to result in misalignment for some subjects, and therefore FSL's
flirt tool and a normalized mutual information cost function is now
used for all coregistration (Woolrich et al., 2009). The three
coregistered images were used to extract brain and sub-dural CSF
from the supratentorial cranial compartment with some manual
editing to create a binary mask which was applied to the 3
coregistered images (Figs. 1b–c). Automation of this process was
accomplished using a template-guided procedure, using an in-house
template that was generated by averaging 50 previously extracted
brain scans using our previous method. The T1-template was
coregistered to each subject's T1 image and the inverse transforma-
tion matrix was used to move the binary template HfB mask into
subject space using nearest neighbor interpolation. The spatially
transformed template HfB binary mask in subject space was then
smoothed using a 3D recursive Gaussian image filter (sigma=2). The
PD-T2 images were intensity normalized to have values between 0
and 1. Voxels greater than 0.9995 on the transformed, smoothed
template HfB binary mask and voxels greater than a predefined
threshold value on the intensity normalized T2 (threshold=0.35)
and PD (threshold=0.37) were accepted as brain, creating each
subjects' first pass HfB binary mask. Each subjects' first pass HfB mask
was smoothed using a 3D recursive Gaussian image filter (sigma=2)
and voxels greater than 0.5 were accepted as brain to create the
subject's final HfB mask.

The final brain-extraction mask is manually checked and corrected
for common brain-extraction errors, such as around the optic tracts
and the more superior axial slices, using in-house image editing
software and/or the itk-SNAP software package (Yushkevich et al.,
2006). The manual checking step took approx. 1–10 min of user
intervention.

Brain-Sizer's extraction procedure was developed to address the
tendency for other brain-extraction methods to remove a significant
number of sCSF voxels near the brain perimeter. Most brain-
extraction methods (e.g., FSL's Bet, Freesurfer's MRI Watershed)
operate on only the T1 image, where there is little intensity
differentiation between background and sCSF (see Fig. 2). Therefore,
we developed an extraction method that operates on the PD-T2
images, where there is good differentiation between all 3 types of
brain voxels (GM/WM/CSF) and background. Thus, Brain-Sizer's
method provides a more accurate brain-extraction mask that includes
all brain and sub-dural CSF voxels.

The brain-extractionmaskwas applied to the T1 and automatically
segmented using a previously published, in-house T1-based tissue
segmentation procedure (Kovacevic et al., 2002). In brief, scanner
inhomogeneity corrected segmentation was accomplished by fitting
four Gaussian curves to local intensity histograms to derive intensity
cut-offs for classifying voxels as WM, GM, or CSF.

Designation of ventricles and cerebellum removal was manually
performed on the T1-segmentation image (T1seg), using in-house
image editing software and/or a modified version of the itk-SNAP
software package (Yushkevich et al., 2006). The modified itk-SNAP
interface is shown in Fig. 3. The re-labeling of CSF to vCSF was
accomplished by seeding and floodfilling CSF voxels on the T1seg with
the T1 image for reference. This stepwas performedmanually in order
to accurately segment periventricular subcortical hyperintensities —

where lesion voxels adjacent to the ventricles can often segment as
CSF in fully automated procedures.

The manual steps for editing the T1seg for vCSF assignment and
cerebellum removal took approx. 30–45 min of user intervention,
with each brain voxel classified into one of 4 categories: WM, GM,
vCSF and sCSF.

Component 2 — Semi-Automated Brain Region Extraction (SABRE)
Brain region parcellation was accomplished using an updated

version of previously described methods (Dade et al., 2004). SABRE is



Fig. 1. Image processing steps (left to right): a) T1, PD and T2; b) PD and T2 are coregistered to T1-acquisition space and a binary mask (orange) is overlayed for brain extraction; c)
brain and sub-dural CSF is extracted in preparation for tissue segmentation; d) T1-segmentation (T1seg: blue=CSF, light gray=WM, dark gray=GM), Lesion Explorer
segmentation (LabVol) in red overlayed on PD-T2; e) SABRE parcellations (colors represent different SABRE regions), T1seg corrected for SH (i.e., T1seg+LabVol), corrected
segmentation volumes separated into SABRE regional compartments (i.e., T1seg+LabVol+SABRE).
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a quick and reliable method that was used to extract 26 brain regions
proportional to individual head sizes (ICC range: 0.97–0.99 for
individual tissue classes in each region). Previous studies have applied
the SABRE method in studies examining multiple sclerosis (MS) and
frontotemporal dementia (FTD), showing its ability to discriminate
varying pathologies (Carone et al., 2006; Chow et al., 2007, 2008a,b).
In brief, a set of easily identified landmarkswere traced on themasked
T1 images using the 3D volume render and 2D region of interest (ROI)
module in ANALYZE (Biomedical Imaging Resource, Mayo Foundation,
Rochester, MN, USA): the central sulcus, sylvian fissure and parieto-
occipital sulcus. These tracings were combined with 7 landmarks
identified in 2D on the T1 image to generate a Talairach proportional
grid systemwhichwas used to create individualizedmaps of 13 lobular
regions in each hemisphere — resulting in a total of 26 brain regions
(Fig. 1e). The manual steps for SABRE landmark identification took
approx. 20 min of user intervention. An updated version of SABRE uses
an in-house modified version of itk-SNAP for landmark identification
and reducesmanual interventionby 5–10 min (Yushkevich et al., 2006).



Fig. 2. A comparison of skull stripped T1 images using LE's Brain-Sizer, FSL's Brain Extraction Tool (BET) and Freesurfer using standard parameters. Accurate estimates of TIC are
required to correct for individual variability in head size differences, which are particularly relevant when accounting for sex differences (Decarli et al., 2005b).
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The modified itk-SNAP interface is shown in Fig. 4. Additional study-
specific SABRE regions are available upon request which include:
additional temporal lobeparcellations; cholinergic pathways; cingulate;
thalamus.

Component 3 — Lesion Explorer: subcortical hyperintensity
segmentation

Given that prior to this component, all brain voxels have been
classified as GM/WM/vCSF/sCSF, the LE segmentation can be
considered as a correction of the original T1seg — where previously
classified voxels were reclassified as SH using additional information
from the PD-T2 images. Further segmentation into pvSH, dwSH,
lacunar and non-lacunar was accomplished using automated
procedures.
Fig. 3. In-house modified version of the itk-SNAP software package (Yushkevich et al., 2006)
used to remove the sub-tentorial brain matter from the T1seg (right).
SH segmentation was accomplished by applying an adaptive local
thresholding model that was used for SH segmentation, similar to
Kovacevic et al. (2002) method for dealing with inhomogeneities. The
edited T1seg (obtained from the Brain-Sizer component) was first
used to mask the coregistered PD and T2 for head-from-brain and
vCSF removal. The brain images were subdivided into small 3D local
regions to calculate thresholds, based on intensity histograms derived
from the PD and T2 images. Mean and local maxima were used in this
model to estimate intensity cut-offs (T) for SH as follows:

T = mean + P max−meanð Þ

Where P=fractional threshold (0–1), allowing the user to
calibrate the model for application to different pathologies, including
showing manual removal of cerebellum. The T1 is used as the reference (left) and then

image of Fig.�2
image of Fig.�3


Fig. 4. In-house modified version of the itk-SNAP software package (Yushkevich et al., 2006) showing the Semi-Automated Brain Extraction (SABRE) landmark identification
procedure (Dade et al., 2004). The SABRE tool-kit has grid coordinates for specified landmarks shown on the left interface panel (e.g., anterior and posterior commissure: AC–PC) and
allows for the manual identification of additional structures required for SABRE regional parcellation such as the parieto-occipital sulcus traced in red (right).
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cerebrovascular, and varying MRI acquisition systems. The fractional
threshold was set at 0.05 for both PD and T2 on the set of reliability
scans used in this study. The two SH segmentations from the PD and
T2were combined using an AND operation. The output of this step is a
single labeled volume containing the segmented SH (LabVol). This
automated SH segmentation method provides a simple, fast, and
effective segmentation providing satisfactory initial results for further
processing.

Following the initial SH segmentation, many sCSF, vCSF, and
choroid plexus (CP) voxels were classified as SH. These false positive
classifications were minimized using the following two-stage false
positive minimization procedure.

A vCSF-CP mask was generated from the edited T1seg and
subjected to the following morphological operations: a 2D dilation
operation (radius=1, cross structuring element), followed by a 2D
closing operation (radius=1, ball structuring element). Any remain-
ing “holes” in the vCSF-CPmaskwere filled (where holes were defined
in 2D as any region that was unreachable after flood filling from the
far edge of the image). The morphological dilation and closing
operations ensured that partial volume voxels near the edge of the
ventricles and choroid plexus voxels were included in the vCSF-CP
mask (and later removed from the SH segmentation).

A sCSF-GM mask was generated using an approach based on the
fuzzy C-Means (FCM) clustering algorithm (Bezdek et al., 1997). In
brief, the FCM algorithm is an unsupervised clustering technique that
is used to partition datasets into “C” different classes. Each data point
is assigned a “fuzzy” membership grade that represents the degree to
which a data point belongs to each of the classes. To generate the
sCSF-GM mask, the FCM algorithm was applied to the T1 image using
4 classes: background, CSF, GM and WM. The FCM results for the CSF
class were thresholded, creating a CSF mask (threshold=0.150) and
any vCSF voxels (from the mask described above) were removed,
creating a sCSF mask. Any voxels not connected in 3D to the largest
object in the sCSF mask were also removed, as these voxels could be
cystic lesion voxels that should be included in the SH segmentation
and therefore excluded from the sCSF-GM mask. The GM compart-
ment was then estimated by taking advantage of the fact that GM
voxels are typically situated within a narrow region adjacent to sCSF
voxels. Specifically, the sCSF-GMmaskwas generated by performing a
3D dilation operation (radius=1, ball structuring element) on the
sCSF mask, followed by the application of a 2D median filter
(radius=1), and finalized with a 2D dilation operation (radius=1,
cross structuring element).

Any voxel on the SH segmentation that corresponded to a vCSF-CP
or sCSF-GM voxel on the mask images was reclassified as non-SH,
thereby minimizing the number of false positive classifications.
Finally, hyperintensities which were 3 voxels or less in size (in 3D)
were removed from the segmentation to account for small artifacts
and the exclusion of most Virchow–Robin spaces. Larger VR spaces
typically found in the inferior region of the basal ganglia and thalamus
were manually excluded if necessary. Virchow–Robin spaces were
also defined by their relative intensity differences on PD and T2
images, where they appear hyperintense on T2, isointense on PD and
hypointense (dark, CSF intensity) on T1 (see Fig. 5).

A manual checking procedure was performed by a trained
operator to remove any further false positives using an in-house
editing software and/or a modified version of the itk-SNAP software
package (Yushkevich et al., 2006). The manual steps for checking the
SH segmentation took approx 10–20 min of user intervention.

Periventricular and deep white segmentation

An automated 3D connectivity operation (3D face connectivity, 6
connected neighborhood) was applied to the edited SH segmentation
(LabVol) to further segment pvSH from dwSH. Using the T1seg, all SH
voxel clusters that were connected in 3D to the ventricles were sub-
classified as pvSH and the remaining SH voxels were classified as
dwSH. In this manner, all contiguous SH adjacent to the ventricles

image of Fig.�4


Fig. 5. (Left to right) T1, PD, T2, T1seg overlayed onto T1 (pink=WM, turquoise=GM, blue=CSF, red=vCSF). VR perivascular spaces are typically found in the inferior region of the
basal ganglia and were defined by their relative intensity differences on T1, PD, and T2. From left to right, on T1 they appear hypointense (dark), on PD they appear isointense and are
relatively unambiguous, on T2 they appear hyperintense, and generally segment as CSF (blue). There are several VR spaces that can be seen on both left and right basal ganglia. VR
can thus be discriminated from lacunes, which generally appear hyperintense on both PD and T2 (see Fig. 7).
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became classified as pvSH, and all discrete SH not connected to the
ventricles became classified as dwSH (see Fig. 6).
Lacunar and non-lacunar

An automated operation was used to further segment SH into
lacunar and non-lacunar subtypes. Using the T1seg, all SH voxels that
segmented as CSF on the T1seg were identified as cystic fluid-filled
Fig. 6. 3D volume render of pvSH (red) and dwSH (blue) displayed in sagittal (left) and
slightly rotated (right) 3D space. Note the red pvSH clearly appears as a single large
mass surrounding the ventricles while the blue dwSH appear as several discretemasses.
lacunar-type infarcts within SH (see Fig. 7). The remaining voxels
became classified as non-lacunar.

Final output

The final output is a comprehensive volumetric profile of an
individual's brain tissue volumeswith regionalized segmentation data
for: GM, WM, vCSF, sCSF, lacunar and non-lacunar pvSH, lacunar and
non-lacunar dwSH in each of the 26 SABRE regions. As a final note,
Brain-Sizer and Lesion Explorer components were implemented using
C++ and ITK (Yoo et al., 2002).

Statistics

The volumetric data was organized into: i) whole brain and, ii)
SABRE brain regions (26 volumes of interest), for statistical analysis.

Whole brain volume inter-rater reliability was determined using
two trained raters who independently checked LE segmentations
from 20 AD participants with varying degrees of SH. Inter-rater
statistics were generated using the intra-class correlation coefficient
of reliability (ICC) (Shrout and Fleiss, 2008). The mean absolute
volume difference was also calculated for descriptive purposes. In
addition, a kappa statistic-derived reliability measure, the Similarity
Index (SI), was calculated to assess the spatial agreement of LE
volumes generated by each rater as follows:

SI =
2* Rater1∩Rater2ð Þ
Rater1 + Rater2

Where Rater1∩Rater2 refers to the pixel-wise overlap between
the two raters. The SI ranges in values from 0 to 1: where 0 indicates
no spatial overlap (poor reliability) and 1 indicates perfect spatial
alignment (high reliability).

Whole brain inter-method reliability was determined by com-
paring LE volumetrics with volumetrics generated using a previously
described semi-automated segmentation based on the kNN algorith-
mic approach (Swartz et al., 2002; Swartz et al., 2008), and qualitative
scores generated using the ARWMC scale (Wahlund et al., 2001), a
consensus-derived, reliable rating scale of subcortical hyperintensi-
ties. The ICC was used with the kNN method comparison and
Spearman rank correlation coefficients were used with the ARWMC
score comparison.

SABRE brain region inter-rater reliability was assessed for 26 brain
regions using the data from the whole brain analysis. ICC was
calculated for each SABRE brain region across the 20 participants.
Spearman correlation coefficients were used to compare volumes
from an additional SABRE mask encompassing the lateral cholinergic
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Fig. 7. Cystic fluid-filled lacunar-type infarcts such as the one shown with the arrow appear hypointense on T1 (top left), and hyperintense on both PD (top middle) and T2 (top
right). The LE pipeline component automatically segments any CSF-intensity voxels (blue voxels, bottom left) within hyperintensities (bottom middle, bottom right). An additional
segmentation is performed that sub-classifies them as lacunar in both deep white (blue within red) and periventricular (purple within yellow) lesion volumes. Note that the initial
T1seg (bottom left) misclassifies some areas of WM (pink) as GM (turquoise) due to their darker intensity on T1 (top left), stressing the importance of an additional lesion
segmentation to correct for this error in severe cases (Levy-Cooperman et al., 2008).

Table 2
Reliability test summary.

Reliability test Result p-value

Whole brain
Mean absolute volume difference 230 mm3

Whole brain volumetrics ICC=.99 pb .0001
Pixel-wise spatial agreement SI=.97
Periventricular SH volumes ICC=.99 pb .0001
Inter-method (kNN segmentation) ICC=.97 pb .0001
Inter-method (ARWMC rating scale) r=.86 pb .0001

Regional
Mean SABRE regions ICC=.98 pb .01
Inter-method (CHIPS rating scale) r=.87 pb .0001

Summary of whole brain and regional reliability tests performed by different raters on
20 AD participants with varying degrees of SH burden.
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pathways with qualitative scores generated by a fifth rater using the
Cholinergic HyperIntensities Scale (CHIPS) (Bocti et al., 2005).

Results

Whole brain results

Whole brain mean absolute volume differences between the two
raters was 230 mm3with the following results: ICC=.99, pb .0001, and
mean SI=.97, indicating excellent inter-rater reliability forwhole brain
volumetric and pixel-wise spatial agreement (see Table 1 for raw data).
Compared to volumes from a previously published semi-automated
segmentation using a kNN algorithm, high reliability was also
demonstrated (ICC=.97, pb .0001). Whole brain segmentation of
pvSH volumes also yielded high reliability results (ICC=.99,
pb .0001). Since the pvSH segmentation showed high reliability and
the pixel-wise spatial agreement as indicated bywhole brain SIwas also
high, the remaining dwSH required no analysis. In addition, the
automated lacunar segmentation also required no analysis as their
volumes yield the exact same results from both raters. When compared
to independently rated scores using the ARWMC, a significant high
Spearman correlation was revealed (r=.86, pb .0001). See Table 2 for
summary.

Regional results

Mean absolute volume difference between the two raters across all
SABRE regionswas 13.83 mm3withmean ICC=.98 [range=0.91–0.99],
indicating high regional inter-rater reliability. SABRE region ICC results
are summarized in Table 2. When compared to independently rated
scores using the CHIPS scale, volumes from SABRE's additional
standardized cholinergic fiber region revealed a significant high
Spearman correlation (r=.87, pb .0001) (Tables 3 and 4).
Discussion

Lesion Explorer is the final component of a comprehensive
segmentation and parcellation package that provides an individual-
ized volumetric profile from standard structural MRI. The overall MRI
volumetrics package is a reliable application that may be used with
confidence in aging populations for both cross-sectional, and
longitudinal studies with a standard structural acquisition protocol.

The brain-extraction component, Brain-Sizer, provides an accurate
measure of an individual's total intracranial capacity. An accurate
intracranial volume is a significant and important measure as it is used
for head size correction. Statistically significant differences may become
not significant after correcting forhead size. The large FraminghamHeart
Study, demonstrated this phenomenon, where men had significantly
greater brain volumes as compared to women, but these differences
were generally not significant after head size correction (Decarli et al.,
2005b). In the Framingham study, total cranial volume was obtained
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Table 3
Regional inter-class correlation coefficients (ICC).

SABRE region ICC

LSUPF 0.99
LIF 0.99
LOBF 0.99
LMOBF 0.92
LSP 0.99
LIP 0.99
LO 0.99
LAT 0.99
LPT 0.99
LABGT 0.98
LPBGT 0.93
LMSF 0.99
LMIF 0.99
RSUPF 0.99
RIF 0.99
ROBF 0.99
RMOBF 0.91
RSP 0.99
RIP 0.99
ROBF 0.99
RAT 0.99
RPT 0.99
RABGT 0.97
RPBGT 0.99
RMSF 0.99
RMIF 0.99
Mean 0.98

ICC in 26 SABRE brain regions from 2 independent
raters. Results are based on 20 participants with AD.
All ICC's reported met minimum, pb .01 significance.
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with operator guided manual tracing along the dura mater. The goal of
Brain-Sizerwas to obtain a similar brain-extraction output that included
all sub-dural tissue (including sub-dural CSF), while minimizing
Table 4
Example of the volumetric profile obtained from pipeline.

SABRE region GM WM CSF vC

LSUPF 7770.5 14,995.0 6062.7
LIF 15,849.3 24,849.0 12,816.7
LOBF 2369.8 7733.2 4012.9
LMOBF 2404.3 6162.8 3993.4
LSP 20,008.4 31,628.7 10,235.1
LIP 25,435.7 30,310.9 10,348.5 14
LO 14,674.2 31,570.2 8312.8
LAT 3930.4 14,158.4 7534.7
LPT 25,941.7 49,416.2 21,673.7 12
LABGT 2756.2 4584.5 462.6
LPBGT 3422.6 4962.0 101.9
LMSF 7408.9 13,856.2 3867.5
LMIF 6855.9 11,009.6 5155.2
RSUPF 4616.4 12,900.0 8955.4
RIF 14,881.6 24,543.3 13,006.3
ROBF 2485.9 6936.5 4972.6
RMOBF 3410.2 7639.3 3636.2
RSP 17,167.2 30,720.3 11,373.9
RIP 21,746.3 27,044.2 8349.2 11
RO 14,785.0 31,329.1 8023.9
RAT 3980.9 13,304.1 7501.1
RPT 26,343.2 50,451.3 23,291.9 13
RABGT 3906.5 6953.4 313.7
RPBGT 3278.2 3474.9 104.6
RMSF 6074.2 12,248.6 7659.7
RMIF 7605.6 12,819.3 5303.2

Discrete lesion no. 1 2

Volume (mm3) 768.36 665.56
Location (final slice) 95 91

An example of an individual's volumetrics profile generated using the LE pipeline. Top table
separated into periventricular (pvSH) and deep white (dwSH) with lacunar segmentations
discrete lacunar counts for the same subject providing size and location information for ea
exhaustive manual tracing along the dura mater. This could only be
accomplished with the introduction of PD-T2, allowing for a greater
contrast difference between sub-dural CSF and background voxels. All
intensity-based T1 skull-stripping algorithms show the same kind of
segmentation errors simply because there is little contrast between CSF
and background. For certain studies and for certain patient groups with
specific questions, the accuracy of most T1-based skull-stripping
approaches (e.g. SPM, BET, Freesurfer) may be sufficient. However, in
clinical dementia populations, such as patients with typical and atypical
AD, frontotemporal degeneration andmixed dementias, focal atrophy is
not uncommon, and thus, the increased accuracy of our method
becomes particularly important. It is also interesting to note that despite
this significantfinding in the Framinghamstudy, researchers continue to
opt for quick T1-based automatic brain-extraction procedures that have
a tendency to erroneously label sulcal-CSF voxels along the perimeter of
the brain as background voxels (see Fig. 3).

The benefits of having tri-feature information from PD-T2 and T1
images were not limited to an accurate intracranial capacity measure.
Although false positive minimization is accomplished with various
masking procedures that are PD-T2-based, this process was actually
dependent on proper segmentation of the ventricles from prior steps in
the process that required a T1 image. Additionally, the SABRE
parcellation procedure is accomplished with a T1 image, which allows
for individualized regional classification of lesion volumes. Another
benefit to Lesion Explorer's tri-feature segmentation is the ability to
further segment subcortical hyperintensities that contain cystic fluid-
filled lacunar-like infarcts in both periventricular and deep white
segmentations (see Fig. 7). This specificity cannot be accomplishedwith
PD-T2 and/or FLAIR alone. Thus, Lesion Explorer should not be
understood as an isolated PD-T2-based SH segmentation. It is a
comprehensive volumetric segmentation and parcellation package
which utilizes information from 3 common structural MRI. Given that
Lesion Explorer was built upon two previously published segmentation
SF dwSH dwSH-L pvSH pvSH-L

0.0 0.0 0.0 2081.8 1.8
1240.7 38.1 0.0 8292.5 422.7

0.0 0.0 0.0 105.5 1.8
2.7 0.0 0.0 95.7 2.7

51.4 54.1 0.0 6041.4 8.9
,646.7 179.0 0.0 12,868.1 180.8
1044.9 2.7 0.9 6512.0 16.8

42.5 0.0 0.0 0.0 0.0
,047.4 244.6 0.0 1903.6 0.0
3842.7 0.9 0.0 148.0 0.9
2962.7 19.5 0.0 0.0 0.0

8.9 36.3 0.0 1589.9 0.0
5948.4 23.9 0.0 865.8 29.2

0.0 0.0 0.0 1415.3 29.2
271.2 0.0 0.0 10,683.5 340.3

0.0 0.0 0.0 14.2 0.0
0.9 14.2 0.0 214.5 15.1

16.0 8.9 0.0 7377.0 42.5
,723.9 133.8 0.0 11,907.4 70.9
901.3 0.0 0.0 6730.9 24.8
22.2 4.4 4.4 0.0 0.0

,313.8 16.8 0.0 2498.3 4.4
3973.9 0.0 0.0 307.5 1.8
2691.5 0.0 0.0 14.2 0.0

0.0 7.1 0.0 1591.7 0.9
5712.6 0.0 0.0 2454.9 242.8

3 4 5

4.43 4.43 2.66
39 48 53

shows raw segmentation volumetrics in mm3 for SABRE parcellated brain regions. SH is
(pvSH-L and dwSH-L) for each SH sub-category. The supplementary table below shows
ch.
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(Kovacevic et al., 2002) and parcellation procedures (Dade et al., 2004),
we feel that the Lesion Explorer component is the final step in the right
direction, with the increasing popularity of multi-modal simultaneous
segmentation techniques (Kabir et al., 2007).

This tri-feature segmentation can be viewed as a limitation, given
the minimal MR acquisition requirements (T1, T2 and PD) to obtain
such a comprehensive volumetric profile. However, multi-modal
acquisition parameters attest to the limited information that a single
MR acquisition can provide. Without a T1, tissue segmentations for
GM, WM, CSF and ventricles could not be performed accurately, and
without a coregistered PD-T2, VR spaces could not be delineated from
lacunes and a proper head-from-brain with sub-dural CSF measures
for TIC could not be performed without a significant amount of
manual intervention. Until the introduction of true simultaneous
multi-modal imaging, these are the minimal MR acquisition para-
meters required to obtain these results accuratelywith this processing
pipeline.

The segmentation of SH into periventricular and deep white
classifications remains controversial. The approaches to delineate
pvSH are highly variable, ranging from arbitrary distance measures
from the ventricles to proportional distances from the ventricles to
the dura mater (Decarli et al., 2005a; Mayer and Kier, 1991; Sachdev
et al., 2005; Silbert et al., 2008). Lesion Explorer employs a novel
approach that is less arbitrary relative to other approaches — any SH
voxel clusters that were connected in 3D to the ventricles were sub-
classified as pvSH. Although there is no neuroanatomical justification
to favor this approach over other approaches, upon viewing the 3D
volume render of pvSH and dwSH (see Fig. 4), we felt this approach
yielded an acceptable segmentation of pvSH which was the least
arbitrary. Future research with the underlying pathology of white
matter disease may result in the re-evaluation of this and other
approaches (Black et al., 2009).

In contrast to the controversial pvSH and dwSH debate, the
pathological significance of the lacunar sub-classification is less
ambiguous. Lacunes are believed to have a more disruptive neuropa-
thology and are associated with hypertension and increased risk of
stroke and dementia (Longstreth et al., 1998; Reed et al., 2004; Vermeer
et al., 2003b, 2007). These cystic fluid-filled infarctions appear as CSF
intensity on the T1 image and are thus derived from a coregistered T1
segmentation with a CSF compartment (see Fig. 7). Most automatic
lesion segmentations often overlook this important sub-classification as
they are solely based on FLAIR imaging segmentation approaches.
Furthermore, the ability to disambiguate Virchow–Robin spaces is
accomplished with the intensity difference between PD and T2 images,
whichalso cannot beaccomplished accuratelywith FLAIR imagingalone
(see Fig. 5).

The overall manual intervention processing time ranges from 45 to
75 min, with minimal CPU runtime. In contrast, the FreeSurfer
segmentation software package reports 20 h of CPU runtime (2× Intel
Xeon E5420) with minimal user intervention (https://surfer.nmr.mgh.
harvard.edu/fswiki/ReconAllRunTimes). However, the FreeSurfer seg-
mentation is known to fail where white matter lesions exist, which
make it less than ideal for applications on an elderly population where
age-related white matter changes are common. As outlined in the
releasenotes, thefinal surfacemaynot followGMalong theperimeter of
the lesion (http://surfer.nmr.mgh.harvard.edu/fswiki/ReleaseNotes). A
fix for this known issue may be included in a future release.

As the general progression of imaging analysis has tended towards
more quick and automatic approaches, it is clear that the main
bottlenecks of the Lesion Explorer processing pipeline can be found
where user intervention is required (ranging from 1 to 1.5 h/brain).
Despite this time constraining caveat, the individualized approach and
comprehensive volumetric profile that is provided with our pipeline
could not be accomplished without these manual interventions. Group-
based and template-based analyses are often difficult given the large
individual variabilitywith respect towhole brain atrophyand ventricular
size that is found in aging anddementia populations, especiallywith focal
atrophy syndromes and cerebrovascular lesions which are highly
variable. In this regard, the bias in our processing pipeline is evident as
it was developed in conjunction with a dementia and aging clinic —

where individual characterization remains relevant.
All thresholds except for the intensity normalized PD-T2 thresh-

olds remain fixed. The normalized PD and T2 thresholds are fixed only
for a given set of acquisition parameters. We believe that patient-
group specific thresholds could be determined, for example in MS,
compared to white matter disease from aging and vascular pathol-
ogies, and we intend to do this in future applications. Unfortunately,
we cannot attest to the robustness of our pipeline when applied to
multiple sites with varying parameters as we have not tested this on a
multitude of inputs. However, we have had success with this method
on both 1.5 T and 3 T scanners as well as data from several other sites
with similar acquisition parameters (Chicago, Taiwan, Sherbrooke,
Hong Kong, Buffalo, and UC San Francisco). With the 3 T data, our
method generally requires suppression of the signal from fat, a
standard option available on most MRI scanners, to make the
separation of head from brain less laborious and time-consuming.

Finally, the Lesion Explorer processing pipeline can be quite useful
in conjunction with other advanced imaging techniques. For example,
current research is underway which utilizes the SH segmentation,
WM segmentation, and SABRE parcellations, to generate diffusivity
and fractional anisotropy measures for normal appearing white
matter adjacent to varying degrees of white matter disease with
diffusion tensor imaging (DTI). Likewise, this method can be used to
evaluate cerebral blood flow by using contrast perfusion imaging or
arterial spin labeling (ASL).
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