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Generalization can be defined quantitatively and
an be used to assess the performance of principal
omponent analysis (PCA). The generalizability of PCA
epends on the number of principal components re-
ained in the analysis. We provide analytic and test set
stimates of generalization. We show how the general-
zation error can be used to select the number of
rincipal components in two analyses of functional
agnetic resonance imaging activation sets. r 1999

cademic Press

INTRODUCTION

Principal component analysis (PCA) and the closely
elated singular value decomposition technique are
opular tools for analysis of image data sets and are
ctively investigated in functional neuroimaging (Moel-
er and Strother, 1991; Friston et al., 1993, 1995;
autrup et al., 1995; Strother et al., 1995, 1996; Bull-
ore et al., 1996; Ardekani et al., 1998; Worsley et al.,

997). By PCA the image data set is decomposed in
erms of orthogonal ‘‘eigenimages’’ that may lend them-
elves to direct interpretation. Principal components,
he projections of the image data onto the eigenimages,
escribe uncorrelated event sequences in the image
ata set.
Furthermore, we can capture the most important

ariations in the image data set by keeping only a few
f the high-variance principal components. By such
nsupervised learning we discover hidden, linear rela-
ions among the original set of measured variables.

1 To whom correspondence should be addressed. Fax: (145) 4587

c599. E-mail: lkhansen@imm.dtu.dk.
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Conventionally learning problems are divided into
upervised and unsupervised learning. Supervised
earning concerns the identification of functional rela-
ionships between two or more variables as in, e.g.,
inear regression. The objective of PCA and other
nsupervised learning schemes is to capture statistical
elationships, i.e., the structure of the underlying data
istribution. Like supervised learning, unsupervised
earning proceeds from a finite sample of training data.
his means that the learned components are stochastic
ariables depending on the particular (random) train-
ng set forcing us to address the issue of generalization:
ow robust are the learned components to fluctuation
nd noise in the training set, and how well will they
are in predicting aspects of future test data? General-
zation is a key topic in the theory of supervised
earning, and significant theoretical progress has been
eported (see, e.g., Larsen and Hansen, 1997). Unsuper-
ised learning has not enjoyed the same attention,
lthough results for specific learning machines can be
ound. In Hansen and Larsen (1996) we defined gener-
lization for a broad class of unsupervised learning
achines and applied it to PCA and clustering by the
-means method. In particular we used generalization

o select the optimal number of principal components in
small simulation example.
The objective of this paper is to expand on the

mplementation and application of generalization for
CA in functional neuroimaging. A brief account of

hese results was presented in Hansen et al. (1997).
In what follows we describe a general framework for

arameter estimation on any given data set and the
nsuing generalization errors associated with this pa-
ameterization. We then discuss the application of this
ramework to PCA and how the generalization error

an be estimated analytically and empirically. By exam-



i
n
w
t
w
a

c
s
T
1
b
d
m
l
t

t
m
f
m
a

s
i
a

F
w

N
i
a
u
(
i
v
b
b

d
t
1
L
s
o
a
t
m
r
h
f
i
l
e
r
d

p
t
t
(
d
e
l
a
W
a
n
m
t
p
a
h
u
n
t
f
S
n
s

i
t
c
w
d
i

535GENERALIZABLE PATTERNS
ning the generalization error as a function of the
umber of principal components retained in the model,
e can identify the number of principal components

hat leads to the minimal generalization error. Finally,
e apply the framework to the principal component
nalysis of fMRI data.

MATERIALS AND METHODS

Good generalization is obtained when the model
apacity is well matched to sample size solving the
o-called bias/variance dilemma (see, e.g., Hastie and
ibshirani, 1990; Geman et al., 1992; Mørch et al.,
997). If the model distribution is too biased it will not
e able to capture the full complexity of the target
istribution, while a highly flexible model will support
any different solutions to the learning problem and is

ikely to focus on nongeneric details of the particular
raining set (overfitting).

Here we analyze unsupervised learning schemes
hat are parametrized smoothly and whose perfor-
ance can be described in terms of a cost or error

unction. If a particular data vector is denoted x and the
odel is parametrized by the parameter vector u, the

ssociated cost function will be denoted by e(x 0u).
A training set is a finite sample D 5 5xa6a51

N of the
tochastic image vector x. Let p(x) be the ‘‘true’’ probabil-
ty density of x, while the empirical probability density
ssociated with D is given by

pe(x) 5
1

N o
a51

N

d(x 2 xa). (1)

or a specific model and a specific set of parameters u
e define the training and generalization errors as

E(u) 5 e dx pe(x) e(x 0u) 5
1

N o
a51

N

e(xa 0u) (2)

G(u) 5 e dx p(x) e(x 0u). (3)

ote that the generalization error is nonobservable,
.e., it has to be either estimated from a finite test set
lso drawn from p(x) or estimated from the training set
sing statistical arguments. In Hansen and Larsen
1996) we show that for large training sets the general-
zation error for maximum likelihood-based unsuper-
ised learning can be estimated from the training error
y adding a complexity term proportional to the num-
er of fitted parameters denoted by dim(u):

Ĝ 5 E 1
dim (u)

. (4)

N

Empirical generalization estimates are obtained by
ividing the data set into separate sets for training and
esting, possibly combined with resampling (see Stone,
974; Toussaint, 1974; Hansen and Salamon, 1990;
arsen and Hansen, 1995). Conventionally resampling
chemes are classified as cross-validation (Stone, 1974)
r bootstrap (Efron, 1983; Efron and Tibshirani, 1993)
lthough many hybrid schemes exist. In cross-valida-
ion training and test sets are sampled without replace-
ent while bootstrap is based on resampling with

eplacement. The simplest cross-validation scheme is
old-out, in which a given fraction of the data is left out

or testing. V-fold cross-validation is defined by repeat-
ng the procedure V times with overlapping or nonover-
apping test sets. In both cases we obtain unbiased
stimates of the average generalization error. This
equires only that test and training sets are indepen-
ent.

Principal Component Analysis

The objective of principal component analysis is to
rovide a simplified data description by projection of
he data vector onto the eigendirections corresponding
o the largest eigenvalues of the covariance matrix
Jackson, 1991). This scheme is well suited to high-
imensional, highly correlated data, as, e.g., found in
xploratory analysis of functional neuroimages (Moel-
er and Strother, 1991; Friston et al., 1993; Lautrup et
l., 1995; Strother et al., 1995; Ardekani et al., 1998;
orsley et al., 1997). A number of neural network

rchitectures are devised to estimate principal compo-
ent subsets without first computing the covariance
atrix (see, e.g., Oja, 1989; Hertz et al., 1991; Diaman-

aras and Kung, 1996). Selecting the optimal number of
rincipal components is a largely unsolved problem,
lthough a number of statistical tests and heuristics
ave been proposed (Jackson, 1991). Here we suggest
sing the estimated generalization error to select the
umber of principal components in close analogy with
he approach recommended for optimization of feed-
orward artificial neural networks (Svarer et al., 1993).
ee Akaike (1969), Ljung (1987), and Wahba (1990) for
umerous applications of test error methods within
ystem identification.
We follow Hansen and Larsen (1996) in defining PCA

n terms of a cost function. In particular we assume
hat the data vector x (of dimension L, pixels or voxels)
an be modeled as a Gaussian multivariate variable
hose main variation is confined to a subspace of
imension K. The ‘‘signal’’ is degraded by additive,
ndependent isotropic noise,
x 5 s 1 n. (5)
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536 HANSEN ET AL.
he signal and noise are assumed to be distributed as
ultivariate Gaussian random variables, s , N (x0, Ss),
, N (0, Sn).
We assume that Ss is singular, i.e., of rank K , L,
hile Sn 5 s2IL, where IL is a L 3 L identity matrix and
2 is a noise variance. This ‘‘PCA model’’ corresponds to
ertain tests proposed in the statistics literature for
quality of covariance eigenvalues beyond a certain
hreshold (a so-called sphericity test) (Jackson, 1991).

Using well-known properties of Gaussian random
ariables we find

x , N (x0, Ss 1 Sn). (6)

e use the negative log-likelihood as a cost function for
he parameters u ; (xo, Ss, Sn),

FIG. 1. Data set I. Bias/variance trade-off curves for PCA. The tes
he mean, for 10 repetitions of experiment) and the asymptotic estima
stimate is asymptotically unbiased. The empirical estimate sugges
stimate is too optimistic about the generalizability of the found PC p
e(x 0u) 5 2log p(x 0u), (7)
here p(x 0u) is the p.d.f. of the data given the param-
ter vector. Here,

(x 0 x0, Ss, Sn) 5
1

Î 02p(Ss 1 Sn)0

? exp 12 1

2
DxT (Ss 1 Sn)21Dx2 ,

(8)

ith Dx 5 x 2 x0.

Parameter Estimation

Unconstrained minimization of the negative log-
ikelihood leads to the well-known parameter estimates

x̂0 5
1

N o
N

xa, Ŝ 5
1

N o
N

(xa 2 x̂0)(xa 2 x̂0)ª. (9)

t (*) generalization error estimate (mean 6 the standard deviation of
The empirical test error is an unbiased estimate, while the analytical
n optimal PCA with K 5 8 components. Note that the asymptotic
rns.
t se
te.
ts a
a51 a51
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537GENERALIZABLE PATTERNS
Our model constraint involved in the approximation
5 Ss 1 s2IL is implemented as follows. Let Ŝ 5 SLSª,
here S is an orthogonal matrix of eigenvectors and
5 diag ([l1, . . . ,lL]) is the diagonal matrix of eigenval-

es li ranked in decreasing order. By fixing the dimen-
ionality of the signal subspace, K, we identify the
ovariance matrix of the subspace spanned by the K
argest PCs by

ŜK 5 S · diag([l1, . . . , lK, 0, . . . , 0]) · Sª. (10)

he noise variance is subsequently estimated so as to
onserve the total variance (viz., the trace of the
ovariance matrix),

ŝ2 5
1

Trace [Ŝ 2 ŜK ], (11)

FIG. 2. Data set I. Eigenimages corresponding to the nine most si
ig. 1 suggests that the optimal PCA contains eight components. Amo
ctivation in the right hemisphere corresponding to areas associated
ctivation with a possible interpretation as the supplementary motor
L 2 K c
ence

Ŝn 5 ŝ2IL (12)

nd

ˆ
s 5 S · diag

? ([l1 2 ŝ2, . . . , lK 2 ŝ2, 0, . . . , 0]) · Sª.
(13)

his procedure is maximum likelihood under the con-
traints of the model.

Estimating the PCA Generalization Error

When the training set for an adaptive system be-

cant principal components. The unbiased generalization estimate in
he generalizable patterns we find in the sixth component, PC 6, focal
ith the primary motor cortex. Also there is a trace of a focal central
a.
gnifi
ng t

w

omes large relative to the number of fitted parameters
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538 HANSEN ET AL.
he fluctuations of these parameters decrease. The
stimated parameters of systems adapted on different
raining sets will become more and more similar as the
raining set size increases. In fact we can show for
moothly parametrized algorithms that the distribu-
ion of these parameters—induced by the random
election of training sets—is asymptotically Gaussian
ith a covariance matrix proportional to 1/N (see, e.g.,
jung, 1987). This convergence of parameter estimates

eads to a similar convergence of their generalization
rrors. Hence, we may use the average generalization
rror (for identical systems adapted on different samples
f N ) as an asymptotic estimate of the generalization
rror of a specific realization. Details of such analysis

FIG. 3. Data set I. Top: The ‘‘raw’’ time course of principal com
ovariance matrix); the offset square wave indicates the time course
apping at time intervals at which this function is high. Middle: Smoo
o the activation. Note that both the delay and the form of the respo
eference sequence and the principal component (unsmoothed); the do
evel for rejection of a white noise null hypothesis. The significance le
996). 1/P 5 1000 random permutations of the principal componen
ymmetric extremal values used as thresholds for the given P value.
or PCA can be found in Hansen and Larsen (1996),
here we derived the relation

Ĝ(û) < E(û) 1
dim(û)

N
, (14)

alid in the limit as dim (u/N ) = 0. The dimensionality
f the parametrization depends on the number, K [
1, L], of principal components retained in the PCA. As
e estimate the (symmetric) signal covariance matrix,

he L-dimensional vector x0 and the noise variance s2,
he total number of estimated parameters is dim(u) 5

1 1 1 K(2L 2 K 1 1)/2.

nent 6 (projection of the image sequence onto eigenimage 6 of the
he binary finger opposition activation. The subject performed finger
d principal component with a somewhat more interpretable response
vary from run to run. Bottom: The cross-correlation function of the
ash horizontal curves indicate the symmetric P 5 0.001 significance

l has been estimated using a simple permutation test (Holmes et al.,
equence were cross-correlated with the reference function and the
po
of t
the
nse
t–d
ve
t s
In real world examples facing limited data sets we
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539GENERALIZABLE PATTERNS
enerally prefer to estimate the generalization error by
eans of resampling. For a particular split of the data

et we can use the explicit form of the distribution to
btain expressions for the training and test errors in
erms of the estimated parameters,

5
1

2
log 02p(Ŝs 1 Ŝn) 0

1
1

2
Trace [(Ŝs 1 Ŝn)21 Ŝtrain]

(15)

ˆ
testset 5

1

2
log 02p(Ŝs 1 Ŝn) 0

1
1

2
Trace [(Ŝs 1 Ŝn)21 Ŝtest],

(16)

here the covariance matrices, Ŝtrain and Ŝtest, are

FIG. 4. Data set II. Bias/variance trade-off curves for PCA on v
eneralization error (mean of 10 repetitions of the experiment, the er
he corresponding analytical estimate. The unbiased estimate suggest
e find that the analytical estimate is too optimistic and that it does n
stimated on the two different sets respectively. In the
ypical case in functional neuroimaging, the estimated
ovariance matrix in (9) is rank deficient. Typically,
9 L, hence the rank of the L 3 L matrix will be at
ost N. In this case the we can represent the covari-

nce structure in the reduced spectral form

Ŝtrain 5 o
n51

N

lnsnsn
ª, (17)

here sn are the N columns of S corresponding to
onzero eigenvalues. In terms of this reduced represen-
ation we can write the estimates for the training error,

E(û) 5
1

2
log 2p 1

1

2 o
n51

K

log ln 1
1

2
(L 2 K ) log ŝ2

1
1

2Nŝ2 3o
a51

N

xa
ªxa 2 o

n51

K ln 2 ŝ2

ln
o
a51

N

(xa
ªsn)24 ,

(18)

al stimulation sequence. The upper curve is the unbiased test set
bars indicate 1 standard deviation of the mean). The second curve is
optimal PCA with K 5 3 components. As in the analysis of data set I,

provide a reliable model selection scheme.
isu
ror
s an
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540 HANSEN ET AL.
nd similarly the estimate of the generalization error
or a test set of Ntest data vectors will be

Ĝ(û) 5
1

2
log 2p 1

1

2 o
n51

K

log ln

1
1

2
(L 2 K ) log ŝ2 1

1

2Ntestŝ
2

? 3o
b51

Ntest

xb
ªxb 2 o

n51

K ln 2 ŝ2

ln
o
b51

Ntest

(xb
ªsn)24 .

(19)

he nonzero eigenvalues and their eigenvectors can,
.g., be found by singular value decomposition of the
ata matrix X ; [xa]. In Eqs. (18) and (19) we have
ssumed zero mean signals, x0 5 0, for simplicity.

FIG. 5. Data set II. The principal components corresponding to th
visually stimulated subject. Stimulation takes places at scan time

hree-run sequence. Scan time sampling interval was TR 5 0.33 s. T
igh-frequency physiological components. Note that most of the res
esponse to all three periods of stimulation. Using the generaliza
orresponding to the first three components generalize.
Here we assume that the principal components are p
mportance ranked according to their variance contribu-
ion, i.e., leading to a simple sequential optimization of
. For each value of K we estimate the generalization
rror and commend the value that provides the mini-
al test error. It is interesting to consider more general

earch strategies for principal component subset selec-
ion; however, an exhaustive combinatorial search over
he 2N (there are only N nonzero covariance eigenval-
es for N , L) possible subsets is out of the question for
ost neuroimaging problems.

RESULTS AND DISCUSSION

Example I: Motor Study

An fMRI activation image set of a single subject

ne largest covariance eigenvalues for a sequence of 300 fMRI scans of
5 8–25 s, t 5 42–59 s, and t 5 75–92 s relative to the start of this
sequences have been smoothed for presentation, reducing noise and
se is captured by the first principal component, showing a strong
error estimates in Fig. 4, we find that only the time sequences
e ni
s t
he
pon

tion
erforming a left-handed finger-to-thumb opposition
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541GENERALIZABLE PATTERNS
ask was acquired. Multiple runs of 72 2.5-s (24 base-
ine, 24 activation, 24 baseline) whole-brain echo pla-
ar scans were aligned, and an axial slice through
rimary motor cortex and the supplementary motor
rea of 42 3 42 voxels (3.1 3 3.1 3 8 mm) was ex-
racted. Of a total of 624 scans, training sets of size N 5
00 were drawn at random and for each training set the
emaining independent set of 324 scans was used as
est set. PCA analyses were carried out on the training
et. We used Eq. (19) to compute the average negative
og-likelihood on the test set using the covariance
tructure estimated on the training sets and Eqs. (4)
nd (18) to compute the analytical estimate of the
eneralization error. Both estimates were then plotted
ersus size of the PCA subspace; see Fig. 1.
Inspection of the test set curve suggests a model

omprising eight principal components. We note that
he analytical estimate is too optimistic, presumably

FIG. 6. Data set II. Covariance eigenimages corresponding t
orresponding to the dominating first PC is focused in visual areas.
igenimages corresponding to the first three components generalize.
ecause the sample is not large enough for the asymp- o
otic results to hold. It underestimates the level of the
eneralization error and points to an optimal model
ith more than 20 components which—as measured by

he unbiased estimate—has a generalization error as
ad as a model with one or two components.
The covariance eigenimages are shown in Fig. 2.

igenimages corresponding to components 1–5 are
ominated by signal sources that are highly localized
patially (hot spots comprising one to four neighbor
ixels). It is compelling to defer these as confounding
ascular signal sources. Component 6, however, has a
omewhat more extended hot spot in the contralateral
right hemisphere) motor area. In Fig. 3 we provide a
ore detailed temporal analysis of this signal source.
t the top the ‘‘raw’’ principal component sequence is
ligned with the binary reference function encoding the
ctivation state (high, finger opposition; low, rest).
elow, in the center, we give a low-pass filtered version

he nine most significant principal components. The eigenimage
ng the bias/variance trade-off curves in Fig. 4, we find that only the
o t
Usi
f the principal component sequence. The smoothed
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542 HANSEN ET AL.
omponent shows a definite response to the activation,
hough with some randomness in the actual delay and
hape of the response. At the bottom we plot the cross-
orrelation function between the on/off reference function
nd the unsmoothed signal. The cross-correlation function
hows the characteristic periodic sawtooth shape resulting
rom correlation of a square-wave signal with a delayed
quare wave. The horizontal dash–dot curves are the
ymmetric P 5 0.001 intervals for significant rejection of a
hite noise null hypothesis. These significance curves
ere computed as the extremal values after cross-correlat-

ng 1000 time-index permutations of the reference function
ith the actual principal component sequence. The signifi-

ance level has not been corrected for multiple hypotheses
Bonferroni). Such a correction depends in a nontrivial way
n the detailed specification of the null and is not relevant
o the present exploratory analysis.

Example II: Visual Stimulation

A single slice holding 128 3 128 pixels was acquired

FIG. 7. Data set II. Cross-correlation analyses based on a referenc
nd the value 11 for scans taken during stimulation. Each panel sh
unction for times t [ [2100 s, 100s]. The dotted horizontal curves a
ross-correlation. These curves are computed in a manner similar to
omponent sequence were cross-correlated with the reference functio
alue. The test has not been corrected for simultaneous test of multip
) only component 1 shows significant correlation with the activation
eference function delayed by t < 10 scans corresponding to 3.3 s.
ith a time interval between successive scans of TR 5 s
33 ms. Visual stimulation in the form of a flashing
nnular checkerboard pattern was interleaved with
eriods of fixation. A run consisting of 25 scans of rest,
0 scans of stimulation, and 25 scans of rest was
epeated 10 times. For this analysis a contiguous mask
as created with 2440 pixels comprising the essential
arts of the slice including the visual cortex. Principal
omponent analyses were performed on a subset of
hree runs (N 5 300, runs 4–6) with increasing dimen-
ionality of the signal subspace. Since the time interval
etween scans was much shorter than in the previous
nalysis temporal correlations were expected on the
emodynamic time scale (5–10 s). Hence, we used a
lock-resampling scheme: the generalization error is
omputed on a randomly selected ‘‘hold-out’’ contiguous
ime interval of 50 scans (,16.7 s). The procedure was
epeated 10 times with different generalization inter-
als. In Fig. 4 we show the estimated generalization
rrors as function of subspace dimension. The analysis
uggests an optimal model with a three-dimensional

me function taking the value 21 at times corresponding to rest scans
s the cross-correlation of the principal component and the reference

5 0.001 levels in a nonparametric permutation test for significant
lmes et al. (1996): 1/P 5 1000 random permutations of the principal
d the (two-sided) extremal values used as thresholds for the given P

ypotheses (Bonferroni). Of the three generalizable patterns (c.f., Fig.
erence function. The first component is maximally correlated with a
e ti
ow
re P
Ho

n an
le h
ref
ignal subspace. In line with our observation for data
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543GENERALIZABLE PATTERNS
et I the analytic estimate is too optimistic about the
eneralizability of the high-dimensional models.
The first nine principal components are shown in Fig.

; all curves have been low-pass filtered to reduce
easurement noise and physiological signals. The first

omponent picks up a pronounced activation signal. In
ig. 6 we show the corresponding covariance eigenim-
ges. The first component is dominated by an extended
ocal activity in primary visual cortex (V1). The third
omponent, also included in the optimal model, shows
n interesting temporal localization, suggesting that
his mode is a kind of ‘‘generalizable correction’’ to the
rimary response in the first component, this correc-
ion being active mainly in the final third run. Spa-
ially, the third component is also quite localized,
icking up signals in three spots anterior to the pri-
ary visual areas.
In Fig. 7 we have performed cross-correlation analy-

es of all of the nine most variant principal component
equences. The horizontal dash–dot curves indicate

5 0.001 significance intervals as above. While the
rst component stands out clearly with respect to this
ignificance level, the third component does not seem
ignificantly cross-correlated with the reference func-
ion in line with the remarks above. This component
epresents a minor correction to the primary response
n the first component active mainly during the third
un of the experiment.

CONCLUSION

We have presented an approach for optimization of
rincipal component analyses on image data with
espect to generalization. Our approach is based on
stimating the predictive power of the model distribu-
ion of the our PCA model. The distribution is a
onstrained Gaussian compatible with the generally
ccepted interpretation of PCA, namely that we can use
CA to identify a low-dimensional salient signal sub-
pace. The model assumes a Gaussian signal and
aussian noise appropriate for an exploratory analysis
ased on covariance. We proposed two estimates of
eneralization. The first is based on resampling and
rovides an unbiased estimate, while the second is an
nalytical estimate which is asymptotically unbiased.
The usefulness of the approach was demonstrated on

wo functional magnetic resonance data sets. In both
ases we found that the model with the best generaliza-
ion ability picked up signals that were strongly corre-
ated with the activation reference sequence. In both
ases we also found that the analytical generalization
stimate was too optimistic about the level of general-
zation. Furthermore, the optimal model suggested by

his method was severely overparametrized.
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