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Abs t rac t .  We introduce the concept of generalization for models of func- 
tional neuroactivation, and show how it is affected by the number, N, of 
neuroimaging scans available. By plotting generalization as a function 
of N (i.e. a "learning curve") we demonstrate that while simple, lin- 
ear models may generalize better for small N's, more flexible, low-biased 
nonlinear models, based on artificial neural networks (ANN's), generalize 
better for larger N's. We demonstrate that for sets of scans of two simple 
motor tasks--one set acquired with [015]water using PET, and the other 
using fMRI--practical N's exist for which "generalization crossover" oc- 
curs. This observation supports the application of highly flexible, ANN 
models to sufficiently large functional activation datasets. 
Keywords :  Multivariate brain modeling, ill-posed learning, generaliza- 
tion, learning curves. 

1 I n t r o d u c t i o n  

Datasets  that result from functional activation studies of the living, human brain 
typically consist of two corresponding sets of observables, the microscopic and the 
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macroscopic [26]. The brains haemodynamic response, reflecting the microscopic 
neuronal firing pattern, is measured by modern three-dimensional (3D) imaging 
techniques such as positron emission tomography (PET) and functional magnetic 
resonance imaging (fMRI) by integrating in space and time [21]. Along with the 
resulting set of 3D image volumes (scans) a corresponding set of macroscopic 
descriptors governs the overall conditions of the experiment. This set can include 
experimentally controlled factors, such as paradigm labels and variables, and 
physiological and demographic measures, such as age and heart-rate. The micro- 
and macroscopic observables are generally both sets of multivariate, stochastic 
variables. Arranging the microscopic variables (the 3D image volumes) in vectors 
x and the macroscopic variables in vectors g a functional activation dataset :D 
consisting of N observations can be written as 

l ) = { ( x j , g j ) I j = l , . . . , N }  . (1) 

Generally, we will assume the observations to be random, independent samples of 
an underlying stationary process with distribution P(x, g). As we shall see this 
distribution plays a central role in the analysis of functional activation datasets 
[18]. 

In the following we discuss the so-called "curse of dimensionality" that re- 
sults from the extremely ill-posed nature O f typical functional activation datasets 
[6,23]. The problem is discussed in terms of probability density estimation and 
we briefly mention ways to remedy the inevitable over-parameterization that 
otherwise occurs in modeling procedures based on such datasets [12]. The main 
point we hope to convey is how model generalization--as studied intensively in 
other fields dealing with probability density estimation and multivariate modeling 
[8,13,17,20J--applies to functional neuroimaging [18], and specifically how it is 
affected by the number, N, of available observations. 

2 Models  of Functional Activation Datasets 

In terms of x and g the analysis of functional activation datasets can be phrased 
as the estimation (of properties) of P(x,  g). For instance, we can estimate the 
conditional mean, E{xlg}, using multivariate linear models as in [7], thus effect- 
ively modeling the expected scan from a set of macroscopic variables. Or, we 
can estimate the alternative conditional mean E{glx}, using multivariate linear 
models as in [18], effectively modeling the expected value of a set of macroscopic 
variables from the scan 1. 

In general, we employ parameterized models of the properties we wish to 
estimate. In this work we focus on models that estimate E{glx }. Being a function 
of x we denote these models .fo (x), explicitly indicating the dependency on the set 
of parameters 0. Parameter values are estimated using some or all of the available 
data. We call such a set of data used for parameter estimation the training set, 

~ ) t r a i n  --~ {(x j ,g j )  I J ~- 1 , . . . ,N t ra in}  . (2) 

1 In fact, it can be shown that the two linear models are analogous and simple relations 
between the parameters exist. 
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For a given set of parameters model performance is quantified using the cost 
function, c(x, g, 0), which is often derived from maximum likelihood (ML) argu- 
ments [4,10,14]. Parameter values are estimated by optimizing the cost function 
based on the observations in the training set (we say that the model is trained, 
hence the name). Averaged over the training set this evaluates to 

C(7?train, 0) = / / c ( x ,  g, O)Ptrain(X, g) d x d g  . (3) 

By using the empirical density estimate Ptrain(x,g) = N~o~,I y~,~__~"~" 5 ( x -  
xj ,  g -- gj) we get the so-called training error 

1 Ntrain 

C(7?train,0) - Xtr~i~ ~ c (x j ,g j ,0 ) ,  (x j ,g j )  �9 7)train �9 (4) 
j = l  

The choice of cost function will depend on the noise model and potential con- 
straints we impose on the model outputs (e.g. to make them interpretable as 
probabilities). For more details on these issues see [3,10,14]. 

Equipped with a training set, a model, and a cost function we are ready to 
gain knowledge about P(x,  g) and, hopefully, underlying information processing 
relationships in the human brain. However, several important additional issues 
must be considered before attempting to build practical models. Rather than 
using (4) to model E{glx } from the observations directly we can reduce the 
computational burden dramatically by taking the extremely ill-posed nature of 
typical functional activation datasets into account. 

2.1 I l l - p o s e d  D a t a s e t s  

While we often include only a few descriptors in the macroscopic variables g 
making them low-dimensional, the microscopic variables x that represent the 
scans are often high-dimensional. Despite preprocessing that, among other things, 
mask out voxels outside the brain more than 40000 voxels often remain. Using Z 
to denote the space in which all possible observations fall (i.e., the input space) 
we have dim(Z) ~ 104. The space spanned by the actual observations in the 
dataset is called signal space and denoted S. Often no more than a few hundred 
observations are available, so dim(N) ~ 102. 

Typically dim(S) << dim(Z), making S a small sub@ace of Z. This is exactly 
what characterizes extremely ill-posed datasets. In Fig. 1 an ill-posed situation 
is illustrated. Input space is 3D Euclidean space indicated by the dashed vectors. 
With only two observations in the dataset represented by the solid vectors, signal 
space is a 2D subspace, i.e. a plane. The dataset does not contain information 
about the parts of Z that are orthogonal to N. 

Because the dimension of N is low we have a correspondingly low number of 
degrees of freedom available in any subsequent modeling, and naive estimation 
based directly on the observation pairs (x, g) will result in strong linear relations 
between the estimated parameters; the original basis in which observations in 
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Fig. 1. Illustration of an ill-posed dataset. With input space, l ,  being three-dimensional 
(represented by the dashed vectors) the signal space, S, which is the space spanned by 
the two observations in the dataset (represented by the solid vectors), is the plane 
indicated in gray. The dataset contains no information about the parts of input space 
that are orthogonal to signal space because dim(S) < dim(Z). 

input space are represented is a poor choice when it comes to representing ob- 
servations efficiently in signal space. We can easily construct other, more efficient 
bases, however, that reduce the dimensionality of the representation without loss 
of information [12,19]. The only requirement is that the basis chosen spans signal 
space. One particularly choice of basis is to use the observations in the dataset  
themselves. Even-though efficient in reducing an extremely ill-posed problem to 
an only marginally ill-posed one bases that reveal more about the signal struc- 
ture are available. In particular, a singular value decomposition (SVD) basis 
[11,15,16] has been shown to reveal an interesting subspace structure [12,22,23]. 
In the following v will denote the projection of a scan x onto an efficient basis 
that  spans signal space; for more details see [18]. 

2.2 M o d e l  Flexibi l i ty  and Bias 

Having reduced the extremely ill-posed dataset to a marginally ill-posed one 
where the dimension of each observation, v, equals the number of observations, 
it is now par t  of the modeling task to impose further constraints in order to avoid 
over-fitting. Different model families approach this in various ways, by limiting 
model flexibility and thus the effective dimensionality of the parameterizat ion to 
match the available degrees of freedom. 

In the following we focus on models for classification. Assuming the macro- 
scopic variables to be univariate labels we seek to build models that optimally 
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classify the microscopic variables 2, x, into the correct classes. In other words, 
we seek a decision boundary in signal space that allows the observations to be 
correctly classified according to  their macroscopic labels. More specifically we 
will apply two model families that differ in model flexibility: 

- F i s h e r s  L i n e a r  D i s c r i m i n a n t  

Fishers Linear Discriminant (FLD) is a family of linear classifier that are 
based on a cost function that measures the difference between class means 
relative to the within class variance [4,14]. The term linear refers to the fact 
that the models are linear in the parameters which makes parameter estima- 
tion straight forward. However, this relatively high bias limits the flexibility 
of the relationships (decision boundaries) that the models can implement. 

- A r t i f i c i a l  n e u r a l  n e t w o r k  ( A N N )  c l a s s i f i e r s  
Artificial neural networks is a family of parameter efficient models that deal 
with the curse of dimensionality by employing nonlinearities [2,9]. The mod- 
els are nonlinear in the parameters in contrast to FLD. This complicates 
parameter estimation but makes the models less biased and allow them to 
implement a much more flexible and wider range of relationships (decision 
boundaries) [10,24]. 

3 G e n e r a l i z a t i o n  

Although cost functions allow us to quantify model performance the training 
error in (3) is the average over the .specific and limited training set only. If 
the distribution of observations in this set, Pt~ain (X, g), does not match the true 
distribution, P (x, g), sufficiently well the cost function value will not reflect model 
performance correctly. Rather, as training sets are often small we should use 
generalization error, 

G(0t~ain) = J / c ( x ,  g, 0 t ~ n ) P ( x ,  g) dx dg . (5) 

as our measure of model quality. Unfortunately this requires complete knowledge 
of P (x, g) which, of course, we do not have. Instead we can estimate generalization 
either analytically [1,20] or empirically [24]. The latter is often called test error 

G(Otrain) ~-- C(~)test, Otrain) (6) 
1 N ~  

- -  Nt~st E c(xj ,gj ,0train) ,  (x j ,g j )  e Dtest (7) 
j=l  

and evaluated using an independent set of observations organized in a test set 

Dtest = {(xj,  g9) I J -- 1 , . . . ,  Nt~st} . (8) 

2 In practice we use v of course, thus efficiently representing the scans using a basis 
that spans signal space. 
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In (5) we have indicated how generMization error depends on the training set 
via the estimated parameters Otrain. To eliminate this dependency we average 
over training sets of size Nt~i~ to yield the expected generalization error 

(9) 

which can be estimated empirically by usmg the test error in (7) to estimate 
G(Otrain). Clearly, using a set of the available observations to independently 
estimate generalization reduces the number of observations left for training. The 
optimal split of the available data into training- and test sets constitutes a non- 
trivial problem that has been studied in the context of ANN's and statistical 
re-sampling techniques [5]. In the remainder of this paper we will fix the size 
of the test set as well as the observations therein to allow measures of model 
performance that are unbiased--or at least comparable between different model 
families. 

3.1 Learning Curves  and Generalization Crossover 

Using generalization we are now ready to investigate how the number of observa- 
tions in the training set, Nt~i~, affects model performance. We hypothesize that, 
as Nt~i~ increases, generMization error will decrease. This downwards slope of 
the so-called learning curve is caused by the improved estimates of P(x,  g) (on 
which the models are based) that increasingly larger training sets provide. 

For a given model family the learning curve will eventually flatten out as ad- 
ditional observations no longer improve model performance due to limitations in 
the models themselves. This naturally leads to the further hypothesis that learn- 
ing curves look different for different model families. Models that are very flex- 
ible typically need many examples to obtain stable parameter estimates. These 
models will in return generalize very well. In contrast, the implicit constraints 
in highly biased models enable them to obtain stable parameter estimates from 
fewer observations. However, they may not  generalize as well as their more flexible 
counterparts. Thus, while generalization error is highest for very flexible models 
for small training sets, it decreases to a lower level than for highly biased, less 
flexible models as Ntr~,~ increases. This means that a generalization crossover 
occurs at which point the data support the use of the more flexible models. The 
situation is illustrated in Fig. 2. 

4 M e t h o d s  

To estimate learning curves data from two functional activation studies, both 
involving simple motor tasks, was used. 

4.1 l O l l ] W a t e r  P E T  Scanning 

A set of 30 subjects were each scanned 8 times using a Siemens-ECAT 95313 
PET scanner while alterna%ely resting and performing a simple finger opposition 
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Fig. 2. Model generalization as a function of number of observations, N~a~,  used to 
estimate model parameters. Generalization error decreases with increasing N ~ i ~  for 
both highly flexible and more biased models. The decrease is more rapid for the latter, 
whereas the former reaches a lower level for large values of N t ~ .  At the point of 
generalization crossover enough data is available to support the use of more flexible, 
low biased models. 

task with their left hand [22]. For each subject four scans were acquired in each 
of the two states yielding a total of 240 scans. 

Before scanning [O15]water was automatically injected in the subjects right 
arm leaving the left arm free to perform the task. With the eyes covered by a 
patch an auditory timing signal was delivered by insert earphones. 

For baseline (rest) scans, subjects were instructed to lie still and remain 
awake; they received no st imulat ion For motor  activation scans, the subjects left 
a rm was positioned perpendicular to the scanning couch. At the start  of the injec- 
tion, the timing signal was initiated and the finger-thumb opposition task contin- 
ued for 60 s. The finger-thumb opposition task consisted of sequential opposition 
of the thumb and successive digits, and back again (2, 3, 4, 5, 4, 3, 2, 3, 4 , . . . )  at a 
rate of 1 Hz. 

P E T  scanning commenced when the radioactive material reached the brain, 
typically 10-20 s after injection, and data acquisition continued for 90 s. Each 
scanning session consisted of eight 90 s P E T  scans separated by 10 min rest 
periods to allow for 015 decay, for a total experimental t ime of approximately 
90 rain. The first, third, fifth, and seventh scans were acquired in the baseline 
state, and the second, fourth, sixth~ and eighth scans were acquired in the activ- 
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ated state. Scans corrected for randoms, dead-time, and attenuation, but not for 
scatter, were reconstructed using 3D filtered back-projection. 

4.2 f M R I  Scanning 

A single subject performing a left-handed finger-to-thumb opposition task was 
scanned during eight 180 s runs. In each run 24 baseline, 24 activation, and 
24 baseline whole brain echo planar scans were acquired (2.bs/scan) with an 
interslice distance of 8 mm and an in plane voxel resolution of 3.1 • 3.1 mm 2. 
This yielded a total of 576 scans. During activation the task was timed with an 
auditory signal at a rate of 1 Hz. 

4.3 Scan Alignment and Preproeess ing 

The PET  and fMRI scans were intra-subject aligned using AIR (Automated 
Image Registration) [27] and only the PET  scans were then stereo-tactically 
normalized to a simulated PET  reference volume in Talairach space [25] using the 
12 parameter linear transformation described in [28] (see [22] for more details). 
This yielded scans with 48 slices, inter-slice distance of 3.4 mm and in plane 
voxel resolution of 3.1 • 3.1 mm 2. After masking out voxels outside the brain an 
SVD basis was computed based on the entire 3 set of scans. 

4.4 M o d e l i n g  

After normalizing the singular vectors, v, to zero mean and a standard deviation 
of one, a fixed test set was randomly selected (100 for the PET  data and 200 for 
the fMRI data). The remaining observations were utilized to yield training sets of 
increasing size. A number of training sets of each size (25 for the PET  data and 20 
for the fMRI data) were randomly sampled with replacement 4 from the singular 
vectors. For each of the resulting training sets a linear (FLD) and a nonlinear 
(ANN) classifier were estimated. Model performance was then assessed using 
the fixed test set. The linear and nonlinear classifiers are based on different cost 
functions, so to allow a quantitative comparison generalization was measured as 
the mean misclassification on the independent test set. 

5 R e s u l t s  

Figure 3 depicts the learning curves for the linear and nonlinear classifiers on 
the PET  data. The two curves are slightly offset horizontally to better show the 

a Basing models on an SVD of the entire set of observation limits results from gen- 
eralization measures to the specific set of subjects in the PET ease, and the specific 
subject in the fMRI case. Thus, generalization error does not implicate the extent to 
which models generalize to subjects other than those included in the datasets. 

4 Estimators based on sampling with replacement (also known as bootstrapping), where 
the same observation may appear more than once in the same sample, are asymptot- 
ieally central [5] however counter-intuitive this may seem. 
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error-bars that indicate one standard deviation of the mean for each training 
set size. As hypothesized both learning curves decrease. The nonlinear classifier 
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F i g .  3. For an [O15]water P E T  study of a simple finger opposition task model  general- 
ization (measured as the mean misclassifieation on an independent  test  set) is plot ted 
as a function of number  of observations, Nt~ain, used to est imate model  parameters .  
General izat ion error decreases with increasing Ntrain for the linear as well as the non- 
linear classifiers. However, generalization error decreases more rapidly and settles at 
a higher level for the linear classifier than for its nonlinear counterpart .  Thus, for this 
task linear classifiers seem optimal for small datasets. As more observations become 
available we are bet ter  off using the more flexible nonlinear classifiers. 

seems to generalize worse for small training sets but perform relatively better as 
Nt~i~ increases. Indeed, a generalization crossover occurs for training sets with 
around 60 examples, and a s N~,.~i~ increases further generalization error for the 
nonlinear classifier settles at a lower level than that of its linear counterpart.  

For the fMRI dataset Fig. 4 shows a similar picture. Again the learning curves 
for the linear and nonlinear classifiers cross as the number of observations in the 
training set is increased. Thus, for small training sets we can not reject the linear 
model. 

6 D i s c u s s i o n  

We have introduced a general framework for the analysis of functional activation 
datasets. In this framework the extremely ill-posed nature of typical datasets 
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Fig. 4. For an fMRI study of a left-handed finger-to-thumb opposition task model 
generalization (measured as the mean misclassification on an independent test set) 
is plotted as a function of number of observations, Nt~.,~.;,~, used to estimate model 
parameters. Generalization error decreases with increasing N~ai~ for the linear as well 
as the nonlinear classifiers. However, generalization error decreases more rapidly and 
settles at a higher level for the linear classifier than for its nonlinear counterpart. Again, 
the linear classifiers can not be rejected for small datasets. As more observations become 
available we are better off using the more flexible nonlinear classifiers. 

imposes an immense computational burden on any modeling procedures. We have 
shown how a simple coordinate transform reduces data representation without 
loss of information, thus minimizing the computational load. 

The importance of not measuring model performance on the same set of 
data used to estimate the model parameters has been stressed, and we have 
sketched how independent test sets provide empirical estimates of generalization. 
We have hypothesized how generalization error decreases as more observations 
become available for parameter estimation. Decreasing learning curves satisfying 
our hypothesis have been demonstrated on two functional activation datasets of 
P E T  and fMRI scans of subjects performing simple motor tasks. 

By employing model families that differ in flexibility we have further shown 
the effect of model flexibility on the slope of the learning curves. For the studied 
tasks we have identified generalization crossovers, at which point enough ob- 
servations are available to support the use of a more flexible, nonlinear model. 
We believe this to have implications for the future of modeling in functional 
neuroimaging; as more and more data become available the support for more 
sophisticated and flexible models increase. While introducing problems of their 
own (by e.g. not being linear in their parameters), these models can potentially 
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lead to increased knowledge of the systems that govern information processing 
in the living, human brain. 

7 Acknowledgments 

This work has been funded in part by the Human Brain Project grant P20 
MH57180, the Danish Research Councils for the Natural and Technical Sci- 
ences through the Danish Computational Neural Network Center, CONNECT,  
the Danish Research Council for Medical Science, and the Danish Research 
Academy. 

References 

1. H. Akaike. Fitting autoregressive models for prediction. Annals of the Institute of 
Statistical Mathematics, 21:243-247, 1969. 

2. C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 
1995. 

3. J. S. Bridle. Training stochastic model recognition algorithms as networks can lead 
to maximum mutual information estimation of parameters. Advances in Neural 
Information Processing Systems, 2:211-217, 1990. 

4. R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John Wiley 
& Sons, 1973. 

5. B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Monographs on 
Statistics and Applied Probability. Chapman & Hall, 1993. 

6. J. H. Friedman. On bias, variance, 0/I-loss, and the curse-of-dimensionality. 
Journal of Knowledge Discovery and Data Mining, 1996. In press. 

7. K. J. Friston, J.-P. Poline, A. P. Holmes, C. D. Frith, and R. S. J. Prackowiak. A 
multivariate analysis of PET activation studies. Human Brain Mapping, 4:140-151, 
1996. 

8. B. Hassibi and D. G. Stork. Optimal brain surgeon. Advances in Neural Informa- 
tion Processing Systems, 5:164-174, 1992. 

9. J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory of Neural 
Computation. Addison-Wesley, 1994. 

10. M. Hintz-Madsen, M. W. Pederson, L. K. Hansen, and J. Larsen. Design and evalu- 
ation of neural skin classifiers. In Y. Tohkura, S. Katagiri, and E. Wilson, editors, 
Proceedings of 1996 IEEE Workshop on Neural Networks for Signal Processing, 
pages 223-230, 1996. 

11. J. E. Jackson. A User's Guide to Principal Components. Wiley Series on Probab- 
ility and Statistics, John Wiley and Sons, 1991. 

12. B. Lautrup, L. K. Hansen, I. Law, N. Merch, C. Svarer, and S. C. Strother. Massive 
weight sharing: A cure for extremely ill-posed problems. In H. J. Hermann, D. E. 
Wolf, and E. P. P5ppel, editors, Proceedings of Workshop on Supercomputing in 
Brain Research: From Tomography to Neural Networks, HLRZ, KFA Jiilich, Ger- 
many, pages 137-148, 1994. 

13. Le Cun, Y., J. S. Denker, and S. Solla. Optimal brain damage. Advances in Neural 
Information Processing Systems, 2:598-605, 1990. 

14. K. V. Mardia, J. T. Kent, and J. M. Bibby. Multivariate Analysis. Academic Press, 
1979. 



270 

15. J. R. Moeller and S. C. Strother. A regional covariance approach to the analysis 
of functional patterns in positron emission tomographic data. Journal of Cerebral 
Blood Flow and Metabolism, 11:A121-A135, 1991. 

16. J. R. Moeller, S. C. Strother, J. J. Sidtis, and D. A. Rottenberg. Scaled subprofile 
modeh A statistical approach to the analysis of functional patterns in positron 
emission tomographic data. Journal of Cerebral Blood Flow and Metabolism, 7:649- 
658, 1987. 

17. J. Moody. Prediction risk and architecture selection for neural networks. In 
V. Cherkassky, J. H. F. H., and H. Wechsler, editors, From Statistics to Neural 
Networks, Theory and Pattern Recognition Applications, pages 147-165. Springer 
Verlag, 1992. 

18. N. Mcrch, L. K. Hansen, I. Law, S. C. Strother, C. Svarer, B. Lautrup, U. Kjems, 
N. Lange, and O. B. Paulson. Generalization and the bias-variance trade-off in 
models of functional activation. IEEE Transactions on Medical Imaging, 1996. 
Submitted. 

19. N. Mcrch, U. Kjems, L. K. Hansen, C. Svarer, I. Law, B. Lautrup, S. Strother, and 
K. Rehm. Visualization of neural networks using saliency maps. In Proceedings of 
1995 IEEE International Conference on Neural Networks, volume 4, pages 2085- 
2090, 1995. 

20. N. Murata, S. Yoshizawa, and S.-I. Amari. Network information criterion-- 
determining the number of hidden units for an artificial neural network model. 
IEEE Transactions on Neural Networks, 5:865-872, 1994. 

21. M. I. Posner and M. E. l~aichle. Images of Mind. W. H. Freeman, 1994. 
22. S. C. Strother, J. R. Anderson, K. A. Schaper, J. J. Sidtis, J. S. Liow, R. P. Woods, 

and D. A. Rottenberg. Principal component analysis and the scaled subprofile 
model compared to intersubject averaging and statistical parametric mapping: I. 
"F~nctional connectivity" of the human motor system studied with [150]water 
PET. Journal of Cerebral Blood Flow and Metabolism, 15:738-753, 1995. 

23. S. C. Strother, J. R. Anderson, K. A. Schaper, J. J. Sidtis, and D. A. Rottenberg. 
Linear models of orthogonal subspaces & networks from functional activation PET 
studies of the human brain. In Y. Bizais, C. Barillot, and R. D. Paola, editors, 
Proceedings of the l~th International Conference on Information Processing in 
Medical Imaging, pages 299-310. Kluwer Academic Publishers, 1995. 

24. C. Svarer, L. K. Hansen, and J. Larsen. On design and evaluation of tapped-delay 
neural network architectures. In H. R. Berenji et al., editors, Proceedings of 1993 
tEEE International Conference on Neural Networks , pages 45-51, 1993. 

25. J. Talairach and P. Tournoux. Co-planar stereotaxic atlas of the human brain. 
Thieme Medical Publishers Inc., New York, 1988. 

26. A. W. Toga and J. C. Mazziotta. Brain Mapping. Academic Press, 1996. 
27. l~. P. Woods, S. R. Cherry, and J. C. Mazziotta. A rapid automated algorithm for 

accurately aligning and reslicing positron emission tomography images. Journal of 
Computer Assisted Tomography, 16:620-633, 1992. 

28. R. P. Woods, J. C. Mazziotta, and S. R. Cherry. Automated image registration. In 
K. Uemura et al., editors, Quantification of Brain Function. Tracer Kinetics and 
Image Analysis in Brain PET, pages 391-400. Elsevier Science Publishers B. V., 
1993. 


