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Quantitative Comparisons of Image Registration
Techniques Based on High-Resolution MRI of the Brain

Stephen C. Strother, Jon R. Anderson, Xiao-Liang Xu, Jeih-San Liow, David C. Bonar,

and David A. Rottenberg

Objective: A variety of methods for matching intrasubject MRI-MRI, PET-
PET, or MRI-PET image pairs have been proposed. Based on the rigid body
transformations needed to align pairs of high-resolution MRI scans and/or
simulated PET scans (derived from these MRI scans), we obtained general
comparisons of four intrasubject image registration techniques: Talairach co-
ordinates, head and hat, equivalent internal points, and ratio image uniformity.
In addition, we obtained a comparison of stereotaxic Z frames with a custom-
ized head mold for MRI-MRI image pairs.

Materials and Methods and Results: Each technique was quantitatively eval-
uated using the mean and maximum voxel registration errors for matched voxel
pairs within the brain volumes being registered.

Conclusion: We conclude that fiducial markers such as stereotaxic Z frames
that are not rigidly fixed to a patient’s skull are inaccurate compared with other
registration techniques, Talairach coordinate transformations provide surpris-
ingly good registration, and minimizing the variance of MRI-MRI, PET-PET,
or MRI-PET ratio images provides significantly better registration than all
other techniques tested. Registration optimization based on measurement of
the similarity of spatial distributions of voxel values is superior to techniques

that do not use such information.

Index Terms: Image registration—Image quality—Emission computed to-

mography—Magnetic resonance imaging.

Medical image registration or ‘‘image fusion™
represents a specific application within the field of
close-range photogrammetry (1). The goal of medi-
cal image registration is to geometrically align two
or more image volumes so that voxels representing
the same underlying anatomical structure may be
superimposed. A pair of image volumes might be
from the same subject and the same modality (i.e.,
intrasubject and intramodality registration), from
the same subject but different modalities (i.e., in-
trasubject and intermodality), or from the same mo-
dality but different subjects (i.e., intersubject) (2).
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Registration techniques are typically used to ensure
that the same anatomical regions of the brain are
being sampled in voxel-based data analysis, e.g.,
['30] water activation-subtraction studies (3,4).
Many registration techniques have been proposed
in recent years, and they have typically been eval-
uated in isolation or against one other technique.
Moreover, it is difficult to understand the relative
significance of reported registration errors involv-
ing axis-specific translations and rotations: Is a 1°
error about the x-axis better or worse than a 1 mm
translation error along the y-axis?

We previously attempted to overcome some of
these difficulties in comparing published registra-
tion techniques by using a consistent summary mea-
sure of mean and maximum misregistration within
real brain image volumes (5). Our goal was to obtain
lower error bounds for image registration tech-
niques by comparing them under conditions ex-
pected to provide near optimal registration perfor-
mance. For a single observer, we found (5) that for
comparisons of original and mathematically trans-
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formed MRI image pairs, the principal axis (PA)
technique (6) provided similar mean registration er-
rors (=1 mm) to those from head and hat (HH) (7)
and equivalent internal points (EIP) (8), with larger
mean errors (=2 mm) from Talairach coordinates
(TA) (3,9); with MRI and simulated PET image
pairs, EIP (mean errors =~1.5 mm) slightly outper-
formed HH and PA (mean errors ~2.2 mm), with
larger mean errors from TA (=3.1 mm). Compari-
son of original with repeated and, in addition, de-
liberately mispositioned MRI scans produced esti-
mated errors in the 1 to 2 mm range.

We have extended this preliminary intrasubject
alignment data by performing a new study using two
observers to compare interobserver and intertech-
nique registration errors for the ratio image unifor-
mity technique (RIU) (2,10-12) compared with HH,
EIP, and an improved TA procedure. In addition,
more realistic simulated PET volumes, which incor-
porate reconstruction and noise effects, were cre-
ated and used to examine PET-PET alignment for
RIU, HH, EIP, and TA. We also tested ideal results
for a stereotaxic Z frame (SZF) with a customized
head mold (13,14) to separate algorithmic errors
from those due to repositioning subjects’ heads
within the head molds.

MATERIALS AND METHODS

Transformation Matrices Using
Homogeneous Coordinates

Our measurements of registration accuracy were
based on 4 x 4 homogeneous transformation matri-
ces (TMs) (15) that contained the scaling, rotation,
and translation parameters necessary to match the
voxels in one volume with the equivalent voxels in
another volume. As noted by Ende et al. (16), ho-
mogeneous coordinate transformations are attrac-
tive because they are easy to implement, the in-
verse transform is simply the inverse of the original
transformation matrix, successive transformations
(e.g., rotations about different axes) may be imple-
mented as repeated matrix multiplications, and they
allow nonrigid body skew and perspective transfor-
mations similar to the skew and asymmetry outlined
by Greitz et al. (17,18). In this article we deal only
with rigid body transformations involving transla-
tion, rotation, and limited scaling; the scaling fac-
tors are used to compensate for different voxel
sizes. As an intermediate scaling step to obtain
more accurate matches between brain surfaces
from different modalities, the HH scaling factors
were allowed to vary (19,20). However, the final
TMs derived for the registration techniques (RIU,
HH, EIP, TA, and SZF) used common scaling pa-
rameters based on the voxel sizes of the input image

volumes. The techniques differ in their use of dif-
ferent algorithms to generate the translation and ro-
tation parameters.

MRI Scans and Simulated PET Scans

Each MRI scan was obtained from a GE Signa
scanner and encompassed the entire axial extent of
the brain (~50 slices). Scans were composed of two
SE volumes (1 X 1 X 3 mm voxels) acquired with
TEs of 20 ms (early) and 80 ms (late). Eight normal
volunteers (aged 27-38 years) participated in our
study, but repositioned headholder scans were ob-
tained only in six, with interscan intervals from 1 to
86 weeks. The two scans were performed with a
headholder consisting of a customized foam mold
(5) rigidly fixed in an acrylic frame bearing
Z-shaped fiducial markers (‘‘headholder MRI
scan’’) and the customized headholder rotated 15—
30° and repositioned axially 1-3 cm relative to the
“‘normal’’ position of the previous two scans (‘‘re-
positioned MRI scan”’).

Six mathematically misaligned MRI scans
(“‘transformed MRI scans’’) were formed from the
six headholder MRI scans. One TM was generated
for each of the six subjects by randomly selecting
rotations (<30°) and translations (<2.5 cm) for each
axis. Six transformed MRI scans were then created
by applying the TMs, followed by trilinear interpo-
lation to the headholder MRI scans.

Six simulated PET scans were formed from the
six headholder MRI scans using the resolution pa-
rameters and reconstruction algorithm of the CTI-
Siemens 953B PET scanner (21). For each head-
holder MRI scan, we created gray matter (GM),
white matter (WM), and CSF volumes from the two
SE volumes using the segmentation technique de-
scribed by Bonar et al. (22); formed a new volume
by combining the GM, WM, and CSF volumes with
a gray/white ratio that produced a good match be-
tween the slice means and frequency histograms of
the simulated PET and a coplanar real PET scan;
scaled the new volume so that the slice with the
most counts had 650,000 total counts; forward-
projected and smoothed (5.8 mm FWHM Gaussian)
the scaled volume on a slice-by-slice basis; applied
attenuation factors based on w = 0.096 cm~' and
then added Poisson noise; applied attenuation cor-
rections and reconstructed 2D images (128 x 128)
on a slice-by-slice basis forming a 128 x 128 x 50
slice volume; axially smoothed the volume with a 5
mm FWHM Gaussian kernel and downsampled ax-
ially to form a simulated PET volume of 128 x 128
X 31 slices (3.125 x 3.125 X 3.375 mm voxels); and
applied the TM used in generating the correspond-
ing transformed MRI volume, followed by trilinear
interpolation, to the original simulated PET volume
to create a ‘‘transformed PET volume.”’

Registration techniques were tested by two ob-
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servers with experience in locating the anterior
commissure (AC), posterior commissure (PC), and
24 “‘equivalent internal points’’ but without special-
ized neuroanatomical training. They registered
headholder MRI and transformed MRI scans, head-
holder MRI and simulated PET scans, simulated
PET and transformed PET scans, and headholder
MRI and repositioned MRI scans.

Performance Measures

To measure the performance of registration tech-
niques, we used mean (+SD) and maximum voxel
registration errors (VREs) calculated for all brain
voxel locations within the reference volume of each
pair. The VRE was defined as the geometric dis-
tance in millimeters between the centers of anatom-
ically equivalent voxels in a pair of image volumes
after the application of a particular registration
technique. For each registration technique, we cal-
culated the group mean (=SD) of the individual
mean and maximum VREs from the six registered
volume pairs.

For the headholder MRI with transformed MRI
or simulated PET and the simulated PET with trans-
formed PET volumes, we calculated six residual
TMs (one for each subject) by subtracting the esti-
mated TM from the true TM; applied the residual
TMs to the reference headholder MRI scans, creat-
ing six VRE volumes; and for each VRE volume
calculated the mean (£SD) and maximum VRE:s for
all brain voxels.

Since the true TMs for headholder and reposi-
tioned MRI-MRI scan pairs were unknown, mean
(£SD) and maximum VREs were estimated for
each pair based on correlation coefficients (5) de-
rived using only intracranial voxels [the coefficients
reported in ref. 5 were calculated using all image
voxels]. We calculated the correlation coefficient
and mean (£SD) and maximum VREs for head-
holder and transformed MRI pairs and used a qua-
dratic regression to predict mean (+SD) and maxi-
mum VREs from the correlation coefficients. These
quadratic functions were then used to estimate the
VREs of headholder and repositioned MRI-MRI
scan pairs based on their correlation coefficients
after registration.

Stereotactic Z Frame (SZF)

For the SZF technique, subjects were scanned in
customized foam head molds rigidly fixed in an
acrylic frame containing Z-shaped fiducial markers
filled with copper sulfate solution. The alignment
procedure is briefly described by Anderson et al.

).
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Talairach Coordinates (TA)

The TA technique outlined by Anderson et al. (5)
was a direct implementation of the approach de-
scribed by Friston et al. (23), which was modified
for this study. The locations of the ventral aspect of
the anterior corpus callosum, the ventral aspect of
the thalamic nuclei, the ventral aspect of the poste-
rior corpus callosum, and the occipital pole were
identified. Each location was moved inferiorly by
an amount equal to its mean distance from the AC-
PC line in eight headholder MRI scans; the esti-
mated AC-PC line was determined by performing a
weighted linear regression on the four adjusted lo-
cations. This modified approach is similar to the
two stage fitting procedure suggested by Evans et
al. (24). Once the midsagittal plane and the commis-
sures were identified for each volume, translation
parameters required to align the AC points were
calculated and applied. Finally, the rotations
needed to align the AC-PC lines and the midsagittal
planes were computed so that the Talairach coordi-
nate systems for the two image volumes coincided.

Head and Hat (HH)

Extrameningeal tissues and air were ‘‘stripped”’
from each MRI slice by applying a region-growing
algorithm (22) and then detecting the boundaries of
the resulting ‘‘brain masks’’ of 0’s (nonbrain) and
1’s (brain). The brain masks for PET volumes were
defined by all voxels above a user-selected thresh-
old; the mask boundaries defined the brain surface.
The PET threshold was initially set at 45% of the
maximum voxel value and was then interactively
adjusted by the user to avoid removing white matter
and low activity regions within the brain. The coor-
dinates of the surface points in each volume were
then converted to centimeters to adjust for different
voxel sizes. For MRI-PET registration, MRI and
PET volumes were designated as ‘‘head’’ and
“‘hat,”’ respectively.

The surface-fitting routine developed by Pelizzari
et al. (7) was used to transform (translate, rotate,
scale) points on the ‘‘hat’’ surface so that they
“‘best’’ fitted the ‘‘head’’ surface. The surfaces
were fitted by iteratively minimizing a residual
equal to the mean squared distance between trans-
formed ‘‘hat’’ points and the ‘‘head’’ surface. The
iterative minimization algorithm was typically run
6-10 times; registration parameters from the previ-
ous run were used as starting parameters for the
next run until a stable minimum was found. We
found that this process almost always resulted in
smaller residual fit errors than a single application
of the algorithm. Upon completion of the surface
fitting, the HH-derived scaling factors were dis-
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carded, and new scaling factors were calculated us-
ing the voxel size for each volume.

Equivalent Internal Points (EIP)

Twenty-four easily identifiable points were de-
fined in both MRI and PET images: inferior surface
of anterior temporal lobe (L/R; left/right hemi-
sphere locations, respectively), temporal pole (L/
R), posterior surface of cerebellar hemisphere (L/
R), occipital pole (L./R), most anterior of /R frontal
poles, center of head of caudate nucleus (L/R), cen-
ter of putamen (L/R), center of thalamus (L./R), lat-
eral surface of cerebellar hemisphere (L/R), and
most lateral point of parietotemporal cortex (L/R).
The remaining five points are all located on the mid-
sagittal plane: the superior border of corpus callo-
sum at the level of the anterior thalamus, genu,
splenium, center of the fourth ventricle, and center
of pons. Axial, coronal, and sagittal slices from the
scans to be registered were displayed using our
standard display software (25), and the equivalent
points were interactively marked with a mouse-
driven cursor. The two sets of equivalent points
were translated to match their centers of mass (cen-
troids) at the origin. Procruste’s algorithm (8) was
then used to compute the rotation matrix that min-
imized the root mean square error between the two
sets of translated equivalent points.

Ratio Image Uniformity (RIU)

For the RIU technique, the translation and rota-
tion parameters were determined such that they
minimized the voxel-by-voxel variance of a ‘‘ratio
image.”” The ‘‘ratio images’’ were created using the
techniques described by Woods et al. (10) for MRI-
MRI and PET-PET and by Woods et al. (11) for
MRI-PET. The MRI volumes were ‘‘stripped’’
prior to calculating a ‘‘ratio image.”” We used the
RIU algorithms and programs described by Woods
(12) to iteratively minimize the ratio image variance
using a modified Newton-Raphson method based
on explicitly computed derivatives of the variance
with respect to each of the registration parameters.

RESULTS

Headholder MRI and Transformed MRI Scans

The mean (=SD) and maximum VREs plotted in
Fig. 1 represent the best registration performance
achieved by all techniques. The mean VRE is of the
order of the transverse pixel size of 1 mm except for
SZF and RIU, which have significantly smaller
VREs. The maximum errors approach the slice
width of 3 mm. The greatest interobserver variation
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FIG. 1. MRI-MRI mean and maximum voxel registration er-
rors (mm) for ali brain voxels of six “headholder MRI scans’
after registration with their “transformed MRI volumes’
(mathematically misaligned from the '‘“headholder MRI
scans”). Results are plotted for two observers (open and
filled symbols) and for each of five registration techniques:
SZF, stereotaxic Z frames; TA, Talairach coordinates; HH,
“head and hat"; EIP, equivalent internal points; RIU, ratio
image uniformity.

was found for TA and EIP, the two techniques that
are sensitive to user selection of neuroanatomical
locations. The modified TA approach performed as
well as HH and EIP for mean errors in this ideal
MRI-MRI dataset (in contrast to the original TA
technique reported in ref. 5), but the order of the
maximum errors is reversed between techniques for
the two observers. Slight interobserver differences
in the mean RIU results probably reflect slight dif-
ferences in the interactive creation of stripped MRI
volumes.

Simulated PET and Transformed PET Scans

Figure 2 presents the VRE results for the simu-
lated and transformed PET volumes that are char-
acterized by reduced resolution and increased noise
relative to the original MRI scans. There is no SZF
result because the PET simulation did not include
these external fiducial markers. For HH and EIP
the mean VRE is slightly greater than in Fig. 1, and
there is less interobserver variation. The poorest
alignment is provided by TA, although the errors
are still better, on average, than the voxel size of ~3
mm>. Implementation of the indirect technique for
finding the AC-PC line described by Friston et al.
(23) gave poorer results than those plotted in Fig. 2.
We found it necessary to use a weighted regression
to reduce the impact of variability in the position of
the occipital pole and adjust the average PET re-
gression lines inferiorly (the four points being re-
gressed were dropped inferiorly) with a slight pos-
terior rotation to coincide with the AC-PC lines
identified from the original MRI volumes.
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FIG. 2. PET-PET mean and maximum voxel registration er-
rors (mm) for all brain voxels of six “‘simulated PET scans’
after registration with their “transformed PET scans’ (math-
ematically randomly misaligned from the ‘‘simulated PET
scans'’). Results are plotted for two observers (open and
filled symbols) and for each of four registration techniques:
TA, HH, EIP, RIU (see legend to Fig. 1).

The RIU results represent registration of two sets
of six simulated and six transformed PET-PET
pairs; in addition to different noise distributions,
one set had identical and the other different axial
distributions of mean slice values to test the impact
of changing spatial distributions across a PET-PET
pair. The impact of these axially varying mean slice
differences was found to be quite small, and the
registration results from both sets were combined to
produce a single group mean (+SD) and maximum
VRE for each observer (Fig. 2). The RIU registra-
tion results for both sets of volume pairs were sig-
nificantly better than for any other technique.
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FIG. 4. Mean and maximum voxel registration errors (mm)
for the MRI-MRI pairs of Fig. 1 plotted as a function of the
correlation coefficients of paired volumes (intracranial vox-
els only) after registration. Mathematically misaligned pairs
were created to increase the number of points with lower
correlation coefficients. The solid lines represent quadratic
regression fits to the two datasets.
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FIG. 3. MRI-PET mean and maximum voxel registration er-
rors (mm) for all brain voxels of six “headholder MRI scans'’
after registration with their “transformed PET scans” (math-
ematically randomly misaligned from ‘“‘simulated PET
scans’). Results are plotted for two observers (open and
filled symbols) and for each of four registration techniques:
TA, HH, EIP, RIU (see legend to Fig. 1).

Headholder MRI and Transformed PET Scans

For the MRI-PET registration results plotted in
Fig. 3, the VREs of all techniques have increased
compared with those of MRI-MRI (Fig. 1) and PET-
PET (Fig. 2). The TA provides the worst registra-
tion with mean VREs slightly larger than the PET
voxel size (~3 mm?), and RIU has mean VREs only
slightly larger than the transverse MRI pixel size (1
mm?). Based on mean and maximum VREs, EIP is
better than HH, and RIU is the best technique, par-
ticularly with respect to the maximum-to-mean
VRE ratio. However, the advantage of RIU is more
marked for one observer (open symbols) than the
other (filled symbols). As might be expected, the
maximum VRE is a more sensitive measure of im-
proved registration performance across techniques
than the mean VRE and improves faster from left to
right in Fig, 3.

Headholder and Repositioned MRI Scans

Figure 4 presents the relationship between corre-
lation coefficients and mean and maximum VREs,
based on the correlation coefficients and VREs of
headholder and transformed MRI pairs. Quadratic
regression is seen to provide a reasonable fit to the
data points. Figure 5 represents the VREs obtained
from the correlations of the registered image vol-
ume pairs using the fitted curves in Fig. 4. When
aligning MRI-MRI pairs, the real data results in Fig.
5 reflected the ideal simulated results in Fig. 1;i.e.,
there was little difference between TA, HH, and
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FIG. 5. Estimated MRI-MRI mean and maximum voxel regis-
tration errors (mm) for all brain voxels of six ‘‘headholder
MRI scans” after registration with their “‘repositioned MRI
scans.” Results are plotted for two observers (open and filled
symbols) and for each of five registration techniques: SZF,
TA, HH, EIP, RIU (see legend to Fig. 1).

EIP. Even when a careful attempt was made to re-
position subjects’ heads within customized foam
molds, the Z fiducial markers, which are fixed in
relation to the molds, did not perform as well as any
other registration technique. As for all previous re-
sults, the RIU technique was significantly better
than all other techniques, particularly with respect
to the maximum VREs.

DISCUSSION

Registration errors are accurately known for our
transformed MRI and transformed PET volumes,
and there are no error sources of significant size
that have not been accounted for. Under these con-
ditions, we are obtaining near optimal performance
for the six techniques evaluated, and this perfor-
mance is primarily dependent on the registration
procedures, image resolution and noise, and the tri-
linear interpolation used to generate new volumes
from known transformation matrices. The trans-
formed MRI volumes are ideal in the sense that they
simulate a perfectly stable MRI signal for MRI-MRI
pairs. The simulated PET volumes are ideal in the
sense that the PET signals are more highly corre-
lated with the underlying anatomy (because they
are directly derived from it) than would normally be
expected in real FDG-PET scans.

The best overall registration results were ob-
tained with MRI-MRI pairs (Fig. 1), which have the
most accurately localized anatomical information
because of their high spatial resolution. The similar
performance of HH and EIP techniques with this
idealized dataset is also found for PET-PET image
pairs, but EIP has improved performance for MRI-
PET registration (Fig. 3); however, the perfor-

mance of SZF and TA, and RIU to a lesser extent,
is dependent on the type of image pair being regis-
tered. Given the near ideal nature of our MRI-MRI
datasets (an ideal dataset would have a resolution
volume of <1 mm?), the quality of the registration
obtained by locating the midsagittal plane and the
two commissures for TA is nearly as good as that
obtained using 24 points for EIP or surface infor-
mation for HH (Figs. 1 and 5).

As image volume resolution is decreased and
noise increases in PET-PET pairs (Fig. 2) relative to
MRI-MRI pairs (Fig. 1), the registration error in-
creases for all techniques. Nevertheless, average
errors are si%niﬁcantly smaller than the PET voxel
size (~3 mm"), and errors for HH and EIP increase
by only a small amount compared with those illus-
trated in Fig. 1. This result is expected since the
surfaces identified for HH are only minimally de-
pendent on the underlying voxel size (19), and any
tendency to randomly misplace individual anatom-
ical locations in EIP is averaged out over 24 points
(8). Talairach errors increase more than those asso-
ciated with the other approaches since the PET-
PET registrations rely on indirect estimates of the
locations of the commissures. At the same time,
RIU maintains average errors that are significantly
smaller than those associated with the other tech-
niques. The advantage of the RIU approach persists
when each simulated PET volume of a PET-PET
pair has a different spatial distribution of voxel val-
ues, e.g., the different axial distributions of slice
means used in our simulations. This result indicates
that RIU is relatively robust to functional differ-
ences between image volumes, as demonstrated by
Woods et al. (10) for images with and without acti-
vation foci.

The increased registration errors for MRI-PET
pairs (Fig. 3) compared with PET-PET pairs (Fig. 2)
demonstrate that indirectly registering PET-PET
pairs—first aligning them to MRI volumes and then
aligning the MRI volumes—is less accurate than di-
rectly aligning the PET volumes. One source of this
additional error was highlighted by our finding that
better registration results were obtained for HH if
the scaling factors were allowed to vary for PET-
MRI registrations (19,20)—the scaling factors
helped compensate for the difficulty in finding sim-
ilar brain boundaries in anatomical-functional im-
age pairs. Observers also reported that they found it
easier to confidently identify equivalent points for
the PET-PET pairs than for the PET-MRI pairs.
The increase in TA errors for MRI-PET pairs (Fig.
3) compared with PET-PET pairs (Fig. 2) illustrates
that observer error in reproducibly identifying the
four points used to indirectly locate the AC-PC line
in PET-PET pairs was smaller, on average, than the
error between the estimated AC-PC line from PET
and the ‘‘true’” AC-PC line from MRI.

For MRI-PET pairs, RIU produced the best
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alignment (Fig. 3), although it was no longer as
clearly superior to EIP for both observers as it was
for MRI-MRI (Fig. 1) and PET-PET (Fig. 2). Com-
pared with other registration techniques, the trend
for the RIU advantage to be successively reduced
for MRI-MRI, PET-PET, and MRI-PET compari-
sons reflects the fact that if the image volumes being
aligned have sufficiently different spatial distribu-
tions of voxel values (e.g., anatomical versus func-
tional), minimizing the ratio image variance may
cease to be a superior optimization strategy. The
question remains: Are ‘‘significant’’ functional or
functional-anatomical image differences rare or
common? This question was not addressed by our
datasets and should be further investigated.

The well defined relationship between mean and
maximum voxel registration errors and correlation
coefficients for headholder and transformed MRI
volume pairs is illustrated in Fig. 4 and was used to
estimate the registration errors plotted in Fig. S.
Compared with the errors illustrated in Fig. 1, the
overall increase in average errors of 0.5-1.0 mm in
Fig. 5 probably results from lower correlation coef-
ficients due to signal variations in MRI volumes ac-
quired at different times compared with the perfect
signal stability between the headholder and trans-
formed MRI volumes.

The time required to complete the alignment of
image pairs listed in Table 1 ranged from a minimum
of ~5 min for MRI-MRI with SZF and for PET-PET
with RIU to a maximum of 30 min. The actual run-
ning of the registration algorithm followed by trilin-
ear interpolation to form the registered volumes of-
ten took only a few minutes; it was the stripping of
both volumes and the identification of the TA sys-
tem that accounted for most of the time listed in the
table. Although the RIU algorithm has been termed
‘‘automated’’ (11), we found that the time required
to strip the skull and scalp from the MRI volumes
(~10 min for 50 slices) was roughly equivalent to
that required for an experienced user to identify the

TABLE 1. Approximate times (min) required to register
MRI-MRI, PET-PET, and MRI-PET volumes using five
different registration techniques

Technique MRI-MRI PET-PET MRI-PET
SZF 5 — —
TA® 20 20 20
HH?* 30 10 20
EIP 30 30 30
RIU® 30 5 20

All registrations were performed using a package of IDL-based
software tools designed to facilitate user interaction (22) and run
on a SUN 4/75 (SPARC II) with 64 Mbyte of memory. For ab-
breviations see the text.

2 Approximately 10 min is required to define Talairach coor-
dinates for each volume.

% Ten minutes is required for each MRI volume to ‘“‘strip”
extrameningeal tissues and air.
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24 EIP locations with well designed software (25).

Our experience using TA provides several useful
insights into the errors involved in using Talairach
coordinates. The TA errors for MRI-MRI pairs
(Fig. 1) may be interpreted as a measure of the abil-
ity to reproduce Talairach coordinate locations in
repeated MRI scans of the same subject. On aver-
age, we can expect identical coordinates within the
two volumes to be within ~1 mm of each other.
This 1 mm error resulting from the two stage fitting
procedure used represents a reduction of 50% in the
mean VRE (=2 mm) that we previously reported for
direct implementation of the Friston et al. technique
(23). Our indirect estimate of the AC-PC line (be-
fore the second stage correction to match the di-
rectly measured, average MRI AC-PC line) has the
same features reported by others (24): The midpoint
of the estimated AC-PC line lies posterior and su-
perior to the true AC-PC midpoint with anterior
convergence. Following estimation of the AC-PC
lines in PET-PET pairs, Fig. 2 illustrates that the
reproducibility of Talairach coordinate locations for
repeated FDG-PET scans averages 2-2.5 mm. The
TA errors in Fig. 3 are included only for consis-
tency, as they represent the combined effect of
identifying the AC-PC line in both scans of an MRI-
PET pair; the normal procedure would be to di-
rectly identify the AC-PC line in the MRI scan and
align the MRI-PET pair by a more accurate tech-
nique (24).

While a wide range of headholding techniques
and various evaluation criteria have been proposed
(26,27), our results (SZF in Figs. 1 and 5) and the
experience of others (28) suggest that it is not pos-
sible to fix the head accurately enough relative to
external fiducial markers to obtain registration re-
sults as good as those obtained by nonfiducial-
based techniques. Despite the refinement of our
measurement technique, which resulted in smaller
SZF errors than were reported in ref. 5, the fiducial
markers attached to a custom head mold remained
the worst registration approach that we evaluated.
Furthermore, the SZF results reported in Fig. 1
demonstrate that this is a positioning and not an
algorithmic problem. Better results may be ob-
tained when the fiducials can be rigidly fixed to the
skull, but even then the brain may move relative to
the skull between repeated scans (28). The potential
for movement of the brain relative to the skull is
the reason why we have used the brain surface
rather than the inner table of the skull for registra-
tion with HH.

A number of registration error comparisons have
been reported in the literature. Despite differences
in measuring and calculating registration errors,
these reports together with our results indicate that
there are two general classes of techniques for reg-
istering intra- or intermodality, intrasubject image
pairs. The first class includes HH, PA, and EIP.
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Rusinek et al. (19) compared PA (6) and HH (7) as
the most promising techniques for automated regis-
tration and concluded that PA and HH were both
capable of achieving a registration accuracy of 1-2
mm. Pelizzari et al. (7) found errors due to HH
ranging from 0.7 to 2.5 mm depending on the voxel
sizes of the images being registered, and Turkington
et al. (20) found that errors of <2 mm were readily
obtained for most structures. In a comparison of
HH with EIP, Pelizzari et al. (29) found landmark
location errors consistent with registration errors of
1-2 mm. All these results are consistent with our
own, indicating that the use of limited numbers of
internal points (EIP) or surface (HH) and/or volume
(PA) information may readily achieve mean regis-
tration errors of <2 mm with individual location
errors on the order of 1-3 mm. Chamfer matching
techniques (30) appear to generate errors of this or-
der, as does matching three orthogonal views (31);
these additional techniques belong to the same class
as HH, PA, and EIP.

The second class of techniques utilizes a compar-
ison of internal voxel distributions and includes the
‘‘stochastic sign change criterion’’ (SSC) (32,33),
*‘sum of absolute differences’ (SAD) (34,35), ‘‘ra-
tio image uniformity’ (RIU) (2,10-12), ‘“mean
square difference’” (MSD) (32), and ‘‘cross-
correlation coefficient”” (CC) (36) cost functions.
Published results and our experience indicate that
techniques of this class can routinely produce reg-
istration errors as low as—or lower than—the reg-
istration errors associated with the first class of
techniques. Hoh et al. (35) tested SSC and SAD and
found that they achieved similar registration accu-
racy in both brain and body, while Eberl et al. (34)
and Minoshima et al. (37) found SAD to have a clear
advantage in the brain. The registration accuracy of
RIU has been compared with that of SSC, SAD,
MSD, and CC for F-DOPA PET images. Lin et al.
(36) concluded that the MSD and RIU techniques
performed best; however, Venot et al. (32) con-
cluded that MSD and CC are sensitive to differ-
ences in the spatial distribution of voxel values. Re-
cently, Collins et al. (38) have demonstrated that
CC techniques may be quite stable when imple-
mented as a multistep multiresolution scaling ap-
proach. In an earlier article, Collins et al. (39) dem-
onstrated that PA followed by CC can achieve in-
trasubject misregistration errors across 48 landmark
points of <0.2 mm. There is mounting evidence that
some Class II registration techniques, which utilize
optimization criteria based on matching summary
statistics from internal voxel distributions, perform
consistently better than Class I techniques that ig-
nore such information. Published results and our
experience indicate that SAD or RIU may be opti-
mal for intrasubject brain registration tasks.

If registration to within a PET resolution volume
(~5 mm?) is all that is required for a particular im-

aging task, our results indicate that any of the tech-
niques we evaluated will prove satisfactory. All but
SZF and TA easily achieve registration errors
within the limiting axial resotution (3 mm) of our
MRI scans. The registration accuracy required by
imaging tasks remains a subject of debate (40), al-
though there is evidence that ['’O]water activation
studies may benefit from Class II registration tech-
niques that can achieve registration errors much
smaller than a PET resolution volume (34,37).
There appear to be no computational advantages for
the Class I techniques (PA, HH, EIP) over RIU,
which has a significant computational advantage for
PET-PET registration (see Table 1). Given the sub-
pixel errors achieved by RIU for MRI-MRI and
PET-PET registrations, it seems unlikely that an-
other Class II technique would produce better re-
sults for our datasets. However, SAD or RIU may
produce the smallest subpixel errors for MRI-PET
registrations and for PET-PET registration with
very different image distributions.

Until we understand the tasks for which subres-
olution and/or subpixel registration errors are im-
portant and which Class II techniques produce the
smallest errors, we plan to follow a two step proce-
dure for intrasubject registration. We will identify
the Talairach transformation for each image vol-
ume, and this transformation will then be used to
initialize a RIU registration algorithm (12). Our re-
cent experience (unpublished data) indicates that
this Talairach initialization step may be necessary
to obtain a useful RIU result when dealing with T1
MRI volumes and badly misaligned PET volumes.
Identification of the Talairach coordinates as a pre-
liminary step has four additional advantages: It may
help to speed up RIU computation times; it pro-
vides a standard means of reporting anatomical lo-
cations; it allows for the calculation of the differ-
ence between TA- and RIU-derived transformation
matrices as a quality control procedure to detect
outlying registration errors; and Talairach coordi-
nates alone may be adequate for some intrasubject
registration tasks. We also anticipate the use of EIP
when outlier registration errors are detected, when
pairs of image volumes are abnormal or have suffi-
ciently different distributions that we have no con-
fidence in either Talairach coordinates or RIU op-
timization, or when ‘‘MRI stripping’’ is particularly
difficult, e.g., some T1 MRIs.
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