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 ABSTRACT

The saliency map is proposed as a new method for understanding and visualizing the non-
linearities embedded in feed-fcrward neural networks, with emphasis on the ill-posed case, where
the dimensionality of the input-field by far exceeds the number of examples. Several levels of
approximations are discussed. The saliency maps are applied to medical imaging (PET-scans)
for identification of paradigm-relevant regions in the human brain.
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1. Introduction

Mathematical modeling is of increasing importance
in medical informatics. In bio-medical context the
aim of neural network modeling is often twofold.
Besides using empirical relations established within
a given model, there is typically a wish to interpret
the model in order to achieve an understanding of
the processes underlying and generating the data.
This paper presents a new tool for such opening of
the neural network “black box”.

Our method is aimed at neural network applic-
ations where the network is trained to provide a
relation between huge, highly correlated, measure-
ments and simple “labels”. The measurement could
e.g. be a spectrum, an image, or as in our partieular
case a brain scan volume. The label could be a
concentration, a diagnosis etc.

In neural network applications, an important as-
pect of the training process is the architecture syn-
thesis. An architecturally optimized network sup-
plies structural information about the input field as
used by the model, thus giving a qualitative measure
of importance.

The output of our new procedure is a “map”
quantifying the importance (saliency c.f. [7]) of each

" individual component of the measurement (i.e. pin,

pixel, or voxel) with respect to the obtained empir-
ical relation. Hopefully, this so-called saliency map
will assist the modeler in interpreting the model and
in communicating the interpretation to the end-user.

In bio-medical context it is often hard (not to say
expensive) to gather large samples of data. Hence,
if modeling from high dimensional data based on
small samples, one faces an extremely ill-posed
learning problem and standard practice has been
to apply hand crafted tools (“a priori knowledge”)
for preprocessing and data reduction in order to
bring down the dimensionality of the neural net-
work. However, we have recently shown that one
may cure this extremely ill-posed problem using
straightforward linear algebra without loss of in-
formation [2], [5]. The scheme achieves massive
weight sharing [7] by projecting the high dimen-
sional data onto a low dimensional basis spanning
the so-called signal space of the training set input
vectors. The saliency map is an attempt to visualize
this induced geometry and the specific manner in
which this geometry is used by the trained network.

As a specific case, we consider modeling of im-
ages obtained from Positron-Emission-Tomography
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(PET)-scans which is a technique offering 3-
dimensional volume measurements of human brain
activity. A neural network may be trained using
supervised learning on a given training set of PET-
scans [2], [5]. We investigate two cases, based
on two sets of 64 scans each (8 subjects scanned
8 times): one where the subjects perform an eye
movement task according to a graduated (paramet-
erized) paradigm [6], and one where they perform
a finger opposition task [12]. In the first case the
network is trained to predict the paradigm gradu-
ation parameter—the frequency of the saccadic eye
movements—using the measured activation patterns
in the brain volume as input. In the latter the net-
work is trained to classify the measured activation
patterns as rest or activated (i.e. doing the finger
opposition task). Since the models are nonlinear,
the interpretations are not straightforward. In this
particular case the saliency map can be viewed as a
tool for visualizing the regions in the brain, which
are related most strongly to the specific tasks.

2. The Saliency Map

It is well-known that affine preprocessing [8, 10]
can assist training and generalization significantly.
Affine preprocessing of an input vector ; (i.e. an
element of the training set of inputs X = [z1 ...z ,])
can be expressed as v; = BY(z; — ¢). In fact,
translating by the training set averaged input vector
¢ = & and computing the projection matrix B from
a diagonalization of the input covariance matrix we
may obtain v; as the principal components! of X.
For simplicity we replace z; — ¢ with x; in the
following, without loss of generality.

In image or volume processing, where the number
of input channels I is often much greater than the
number of examples J, a transformation like above
can be used to reduce the dimensionality of the data-
representation. However, it should be noted that
within our scheme for handling extremely ill-posed
problems the preprocessing doesn’t necessarily re-
duce the data?, in contrast to what is often the pur-
pose when employing PCA,| but may merely trans-
form the data to a convenient (orthogonal) basis—
thus we may have rank(X) = rank(jv;...v;]).
In this way we map the high dimensional input
data vector onto a much smaller data vector of
projections—hence, enforcing relations between ele-
ments of the weights connecting input to hidden
units of the feed forward neural network, in other
words we achieve a massive weight sharing. For a
more detailed description see [2], [5]. Spelled out in

1The principal components as obtained from SVD (Sin-
gular Value Decomposition), or PCA (Principal Component
Analysis). In either case the basis vectors correspond to the
eigenvectors of the input data covariance matrix, see [4].
2In the sense of loosing information.

terms of the neural network this can be written,

il

F(OW,B, ) FOW,BTz)

= > Watanh (wlB"z) (1)

which is now a function of the input a projec-
ted on the set of K < rank(X) basis vectors®
by forming the basis B = [b;...bx]| and a set
of weight parameters W = {W,,w,}. The con-
strained weights are in turn optimized using a train-
ingset* T = {(z;,y;)|7 = 1,...,J} by minimizing
the cost function with respect to W

EW.B.T) =

~ie

J
Z (y; — F(W, B7z)), (2)

and we define:

The saliency of input channel ¢ (or pixel 7
if z is an image vector) is the change in the
cost-function when the i’th input channel
is removed.

This removal can be thought of as changing the
basis vectors in B, resulting in the new basis B*

1 b it i’ 1

i.e. setting the i’th component® of all basis vectors
to 0. Introducing this new basis, the model should
be retrained to yield a new set of weight parameters
W?. The saliency of input channel i is therefore

§E; = EOVY, B, T)-EW,B, 7). (4

If pruning is used to eliminate the effect of noise
it should be applied to the full network prior to the
calculation of the saliency map, so the retraining
after removing the individual inputs conserves the
network architecture.

Ideally one could estimate the change in general-
ization ability [11]. Such an estimate would—given
a limited amount of data—be quite inaccurate, and
since we only want to use the saliency map for com-
paring the relative input importance, it seems reas-
onable to consider only the change in the training
error as indicated in equation (4).

Further approximations depend on the specific
problem: In image processing the number of in-
put channels (pixels) is often much greater than the
number of examples, so that the computational bur-
den of the direct computation of the saliency may
be impractical. For such applications we develop

3See also section 2.1 for a more detailed explanation of
the notation.

4The outputs are assumed scalar for simplicity.

5By the notation by ; we mean the i’th element of by.
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approximations of the saliency map using an expan-
sion of the cost function. This is further described
in section 2.1.

Finally, let us note that the saliency map as such
is not confined to the ill-posed learning problem.
In more conventional neural network applications,
where the number of network inputs I is much smal-
ler than the number of examples J, the saliency
is similar to the sensitivity measure proposed in
[14], [13] and [9], and to the Optimal Cell Damage
Scheme suggested in {1]. In this case the removal
of a single input may cause a notable change in the
optimal weights thus making the I network retrain-
ings essential (in contrast to the ill-posed case, as
we shall see).

2.1. The Saliency Map in the Ill-Posed Case

As discussed a significant computational reduction
can be obtained by projecting on the set of basis
vectors B spanning the signal space® S, if I > J.

It is easily seen [2], [5] that training in this case
preserves signal space, i.e., if the initial weights of
a hidden unit are confined to signal space they will
stay there during training. This is a consequence
of the fact that the cost function is independent
of any component of the weight parameters outside
signal space, S, regardless of the basis B used for
representing the data, as long as B spans S.

After preprocessing the neural network is not fed
the actual pixel data, but the projection of the
images on the basis B. This justifies the nota-
tion F(W, BT z;) for the model, in that the model
can be said to be working on the projected data
v; = BTJZJ‘.

2.1.1. Approximating the Saliency Map

If the number of input channels I is large, the task
of retraining I networks—i.e. to compute W* as im-
plied by equation (4)—is immense. In this section
some approximations are presented to speed up the
computation.

The second order expansion of the cost function
with respect to the basis vectors and the weight
vector w = [wf ... w} W, ..WA]T consisting of
all the parameters in W is given by

1

K
JE 3 g—Eébk + %E?au

K
1 r OE 1. r &®E
+ 5 20 by + 0uT 5 bu

27 9b,.0bT 27 duduT
K
O2E
SbF ——— 5
+ § k abkauT‘su, ( )

6We denote the space spanned by the input vectors ; in
the training set 7~ by signal space § = span{z;}.

where 0by, is the change in the k’th basis vector, and
du is the change in the optimal weight parameters,
due to the changed basis. If the network is fully
trained £ = 0 so the second term vanishes’.

In the ill-posed case, modeling will only be mean-
ingful if the stochastic part of the signal is highly
correlated, i.e., the individual pixels are spatially
correlated. Thus it can be assumed that the term du
roughly scales inversely with the number of inputs,
i.e. as 1/I. We therefore neglect all terms scaling

with du yielding

SE ~ z abT

thus eliminating the effect of retraining, effectively
estimating 6E; = E(T,W,B%) — E(T,W,B) c.f.
equation (4). This is in line with the Optimal Brain
Damage scheme [7] for estimating weight saliency
and the approximation is indeed supported by the
numerical example. Since we compute the saliency
for one input channel at a time, the off-diagonal
elements of 8_255%7 vanish, so we finally get
k

JEZ

For the two-layer network specified in equation

0*E
Z by —— T dbi, (6)

~ZaE5b (7)

5b ;
s b2

(1), with h,; = tanh (wIBTz;) we find®
J
O 2 ,
= = —= (v; — FOW,B'z;))
Bbr; 7 2 [
Z W (1 wa kL5, z]
9 J
= ?]‘ Z €5SikLj i (8)

where we have introduced the quantities ej =y; —
FBTz;,W) and s, = Y., Wa(l — )'wa,G By
further invoking the Gauss-Newton approxunatlon

o’E ., J OF OF p _
(W = Xj=1 3b; ggzr) for least squares prob
lems, see e.g. [7], yielding

82E 2.,
7 Z Sik _] i (9)

7If we eliminate overﬁttmg by pruning the network, i.e.
forcing some parameters ' to 0, only the remaining para-
meters u* = u \ ' are optimized so that 831.1,* = 0. On the
other hand, we will generally have 22 au’ # 0, which may cause
negative estimates of the saliency. This can be explained as
follows: If the network models from a subspace of S, called
model-space M, one might say that the basis change in (3)
perturbs signal space, so that some of the noise eliminated
by pruning re-enters M. Sometimes this will allow the model
to perform better on the training set, thus yielding negative
saliencies. We therefore choose to interpret these as zero.

8 Again w, , means the k’th element of wa, and ®; ; the
7’th element of x;.

2087



and since we remove only one input channel in the

basis, i.e. dby ; = —by;, we get
9 K. J TS
- . 2,2 12
6FE; = j Z Z ejbjkiltjjbk,i%j Z Z Sjkxj,ibkj-
k=1 j=1 k=1 j=1

(10)
as the estimate of the saliency map.

3. Ill-posed Example: Modeling from
PET images

We now proceed to demonstrate the practical use of
the saliency map. Positron-Emission-Tomography
(PET) is a way of indirectly measuring the neural
activity of different regions of the human brain,
resulting in 3-dimensional images. As the dimen-
sion of the images is very large, affine preprocessing
(projection of the data on the corresponding PCA-
basis) is applied, thus reducing the computational
requirement of the modeling.

More specifically, we first examined 64 PET-
scans of 8 subjects, each scanned 8 times, exposed
to 8 different levels of saccadic eye movement activ-
ation [6]. We thus analyze J = 64 image vectors of
I =128 x 128 x 48 = 768432 voxels®.

A two-layer feed-forward neural network was
trained to predict the paradigm activation level (the
frequency of the saccadic eye movements) from the
64 3-dimensional brain volumes.

An estimated saliency map was computed em-
ploying the approximation in equation (10). In fig-
ure 1 iso surfaces (surfaces of equal saliency) cap-
turing the most salient voxels are depicted as bright
bodies ﬁoating in a box. To help localize the salient
areas, slices of a corresponding anatomical brain im-
age (an MR scan) are shown on the walls of the box,
with the shadows of the salient bodies projected in
black. The slices correspond to the middle of the
brain, one in each of the three dimensions.

The result is in correspondence with what has
been found using other analysis methods—e.g. Stat-
istical Parametric Mapping (SPM), and the Scaled
Subprofile Model (SSM)—on the same data [6], [12].
The larger cluster of salient pixels, as seen in the
back of the brain, is identified as the visual cortexz.

To demonstrate the accuracy of the 1st and 2nd
order approximations of the saliency, c.f. equation
(10), we computed the images shown in figure 2.
The first column shows the true change in the cost
function'? for horizontal slices through the volume
corresponding the AC-PC!! level -17mm, AC-PC,

90f these a large portion is masked out, leaving vectors
of “only” active 34863 voxels.

19Computed as the change in the cost function without
retraining §E; = E(W, B!, T) — E(W,B,T), so that only
the effects of neglecting the higher order ‘pure’ ¢by terms of
(5) and (6) are assessed.

1 Anterior Comisura - Posterior Comisura, which are eas-
ily identified centers in the brain, and thus used for reference.

Fig. 1: Using the saliency map to asses paradigm related
brain regions in the saccadic eye movement task. The most
salient voxels are depicted as iso surfaces (surfaces of equal
saliency) here seen as bright bodies floating in a box with
slices of a corresponding anatomical brain scan depicted on
the walls. Shadows of the iso surfaces are projected in black
on the walls. The larger cluster in the back of the brain is
the wvisual corte.

Computed Estimated to 1. order Estimated to 2. order

AC--PC +17 mm

AC-PC

AC-PC -t7 mm

Fig. 2: From left to right: Computed saliency map, 1st order,
and 2nd order approximations, all for 3 different slices of
the brain. The slices correspond to the AC-PC level -17
mm, the AC-PC level and the AC-PC level + 17mm. Bright
areas have high saliencies. In the specific case (I = 34863
pixels) all columns are almost identical—thus validating the
approximations. In fact, the 2nd order term seems visually
negligible.

and AC-PC + 17mm. This corresponds to expand-
ing E to infinitely high order with respect to b. The
second and third columns are the 1st and 2nd order
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approximations of (10). It is evident, that even the
1st-order term alone is a useful approximation in
the case of I = 34863 voxels.

Fig. 3: Saliency map of the finger opposition task. The
most salient voxels are depicted as iso surfaces (surfaces of
equal saliency) here seen as bright bodies floating in a box
with slices of a corresponding anatomical brain scan depicted
on the walls. Shadows of the iso surfaces are projected in
black on the walls. The salient area identified is the primary
sensory-motor cortez.

Secondly, the saliency map was computed for a
neural network modeling the finger opposition task,
which involves areas of the brain controlling mo-
tion. The data has previously been analyzed in
[12]. Again, 8 subjects were scanned 8 times each, 4
times resting and 4 times doing the finger opposition
task. Thus the paradigm is on/off corresponding
to a problem of classification!?. Figure 3 shows
the saliency map in a manner similar to figure 1.
The method clearly identifies the area known as the

primary sensory-motor cortez.

Further, we investigated the effect of the dimen-
sion of the input-field I, on the approximation (10).
For simplicity this is done on a single slice, which
is sub-sampled to yield @ = 9 datasets with de-
creasing I. After performing the entire modeling
procedure ) times, we measure as a function of I
the normalized mean squared error for both the 1st

12Note that for classification problems better optimization
schemes (costfunctions) exist, see e.g [3].

and 2nd order expansions, i.e

Sici (3B~ 0E1,)°

fl(I) =

I
Ei:l 5E3,7.
f (I) _ Ef:;l (6ECJ: - (SEzyi)z
2 - T
Zi:l (SECZ,Z
K
OF 11
SE1; = 7 by (11)
1,2 Z 51);” k,t
k=1 ’
K
1 8E _,
0E,; = (SELZ' + 5 pT®; ki
k=1 ki
§EC>Z = E(T7 WaBl) - E(T7W7B)
Effects of input-field dimension
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Fig. 4: Normalized mean squared error of the 1st (—) and
2nd ( - - - ) order approximations of the saliency. With increas-
ing input-field dimension I, the errors decrease—for large I
the 1st order approximation suffices.

These quantities are shown in figure 4. We see
that the error introduced by the approximations de-
creases when I gets large. Further, for very large I,
the 2nd order term seems negligible. This is in line
with the visual impression of figure 2.

Finally, let us note that the saliency map easily
computes for linear models as well.

4. Discussion

We have proposed the saliency map as a new
method for understanding and visualizing feed-
forward neural networks. Furthermore, several
levels of approximations have been derived provid-
ing significant computational savings. The viability
of the approach was demonstrated on a series of 3D
brain activation volumes.

Though the emphasis has been on the so-called
ill-posed case, the proposed technique can easily be
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applied to the more standard setting, i.e. the well-
posed case.
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