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ABSTRACT 
The saliency map is proposed as a new method for understanding and visualizing the non- 

linearities embedded in feed-forward neural networks, with emphasis on the ill-posed case, where 
the dimensionality of the input-field by far exceeds the number of examples. Several levels of 
approximations are discussed. The saliency maps are applied to medical imaging (PET-scans) 
for identification of paradigm-relevant regions in the human brain. 
Keywords: saliency map, model interpretation, ill-posed learning, PCA, SVD, PET.  

1. Introduction 

Mathematical modeling is of increasing importance 
in medical informatics. In bio-medical context the 
aim of neural network modeling is often twofold. 
Besides using empirical relations e&ablished within 
a given model, there is typically a wish to interpret 
the model in order to achieve an understanding of 
the processes underlying and generating the data. 
This paper presents a new tool for such opening of 
the neural network “black box”. 

Our method is aimed at neural network applic- 
ations where the network is trainled to provide a 
relation between huge, highly correlated, mTasure- 
ments and simple “labels”. The measurement could 
e.g. be a spectrum, an image, or as in our particular 
case a brain scan volume. The label could be a 
concentration, a diagnosis etc. 

In neural network applications, an important as- 
pect of the training process is the architecture syn- 
thesis. An architecturally optimized network sup- 
plies structural information about the input field as 
used by the model, thus giving a qualitative msasure 
of importance. 

The output of our new procedure is a “map” 
quantifying the importance (saliency c.f. [7]) of each 

individual component of the measurement (i.e. pin, 
pixel, or voxel) with respect to the obtained empir- 
ical relation. Hopefully, this so-called saliency map 
will assist the modeler in interpreting the model and 
in communicating the interpretation to the end-user. 

In bio-medical context it is often hard (not to say 
expensive) to gather large samples of data. Hence, 
if modeling from high dimensional data based on 
small samples, one faces an extremely ill-posed 
learning problem and standard practice has been 
to apply hand crafted tools (“a priori knowledge”) 
for preprocessing and data reduction in order to 
bring down the dimensionality of the neural net- 
work. However, we have recently shown that one 
may cure this extremely ill-posed problem using 
straightforward linear algebra without loss of in- 
formation [2], [5]. The scheme achieves massive 
weight sharing [7] by projecting the high dimen- 
sional data onto a low dimensional basis spanning 
the so-called signal space of the training set input 
vectors. The saliency map is an attempt to visualize 
this induced geometry and the specific manner in 
which this geometry is used by the trained network. 

As a specific case, we consider modeling of im- 
ages obtained from Positron-Emission-Tomography 
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(PET)-scans which is a technique offering 3- 
dimensional volume measurements of human brain 
activity. A neural network may be trained using 
supervised learning on a given training set of PET- 
scans [a], [5]. We investigate two cases, based 
on two sets of 64 scans each (8 subjects scanned 
8 times): one where the subjects perform an eye 
movement task according to a graduated (paramet- 
erized) paradigm [6], and one where they perform 
a finger opposition task [la]. In the first case the 
network is trained to predict the paradigm gradu- 
ation parameter-the frequency of the saccadic eye 
movements-using the measured activation patterns 
in the brain volume as input. In the latter the net- 
work is trained to classify the measured activation 
patterns as rest or activated (i.e. doing the finger 
opposition task). Since the models are nonlinear, 
the interpretations are not straightforward. In this 
particular case the saliency map can be viewed as a 
tool for visualizing the regions in the brain, which 
are related most strongly to the specific tasks. 

2. The Saliency Map 

It is well-known that affine preprocessing [8, 101 
can assist training and generalization significantly. 
Affine preprocessing of an input vector xj (i.e. an 
element of the training set of inputs X = [z1 . . . ZJ]) 
can be expressed as vj = BT(zj - c ) .  In fact, 
translating by the training set averaged input vector 
c = a: and computing the projection matrix B from 
a diagonalization of the input covariance matrix we 
may obtain vj as the principal components’ of X. 
For simpliGty we replace xj - c with xj in the 
following, without loss of genera1it.y. 

In image or volume processing, where the number 
of input channels I is often much greater than the 
number of examples J ,  a transformation like above 
can be used to reduce the dimensionality of the data- 
representation. However, it should be noted that 
within our scheme for handling extremely ill-posed 
problems the preprocessing doesn’t necessarily re- 
duce the data’, in contrast to what is often the pur- 
pose when employing PCA, but may merely trans- 
form the data to a convenient (orthogonal) basis- 
thus we may have rank(X) = rank([v l . .  .vJ]). 
In this way we map the high dimensional input 
data vector onto a much smaller data vector of 
projections-hence, enforcing relations between ele- 
ments of the weights connecting input to hidden 
units of the feed forward neural network, in other 
words we achieve a massive weight sharing. For a 
more detailed description see [ 2 ] ,  151. Spelled out in 

‘The principal components as obtained from SVD (Sin- 
gular Value Decomposition), or PCA (Principal Component 
Analysis). In either case the basis vectors correspond to the 
eigenvectors of the input data covariance matrix, see [4]. 

’In the sense of loosing information. 

terms of the neural network this can be written, 

F ( W , B , z )  = F ( W , B T z )  

= Wa tanh (wTBTz) (1) 
a 

which is now a function of the input z projec- 
ted on the set of K 5 rank()() basis vectors3 
bl; forming the basis B = [bl . . . b ~ ]  and a set 
of weight parameters W = {W,,w,}. The con- 
strained weights are in turn optimized using a train- 
ing set4 ‘T = { (., , yJ)  1 j = 1, . . . , J }  by minimizing 
the cost function with respect to W 

U 
j=1 

and we define: 

The saliency of input channel i (or pixel i 
if z is an image vector) is the change in the 
cost-function when the i’th input channel 
is removed. 

This removal can be thought of as changing the 
basis vectors in B, resulting in the new basis Bz 

(3) 

i.e. setting the i’th component5 of all basis vectors 
to  0.  Introducing this new basis, the model should 
be retrained to yield a new set of weight parameters 
Pb‘. The saliency of input channel i is therefore 

bE, = E ( W ,  B’, 7)  - E(W,  B, 7) .  (4) 

If pruning is used to eliminate the effect of noise 
it should be applied to the full network prior to the 
calculation of the saliency map, so the retraining 
after removing the individual inputs conserves the 
network architecture. 

Ideally one could estimate the change in general- 
ization ability [ll]. Such an estimate would-given 
a limited amount of data-be quite inaccurate, and 
since we only want to use the saliency map for com- 
paring the relative input importance, it seems reas- 
onable to consider only the change in the training 
error as indicated in equation (4). 

Further approximations depend on the specific 
problem: In image processing the number of in- 
put channels (pixels) is often much greater than the 
number of examples, so that the computational bur- 
den of the direct computation of the saliency may 
be impractical. For such applications we develop 

3See also section 2.1 for a more detailed explanation of 

4The outputs are assumed scalar for simplicity. 
5By the notation b k , i  we mean the i’th element of bk. 

the notation. 
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approximations of the saliency map using an expan- 
sion of the cost function. This is further described 
in section 2.1. 

Finally, let us note that the saliency map as such 
is not confined to the ill-posed learning problem. 
In more conventional neural network applications, 
where the number of network inputs I is much smal- 
ler than the number of examples J ,  the saliency 
is similar to the sensitivity memure proposed in 
[14], [13] and [9], and to the Optimal Cell Damage 
Scheme suggested in [l]. In this case the removal 
of a single input may cause a notable change in the 
optimal weights thus making the I network retrain- 
ings essential (in contrast t o  the nll-posed case, as 
we shall see). 

2.1. The Saliency Map in the 111-Posed Case 

As discussed a significant computational reduction 
can be obtained by projecting on the set of basis 
vectors B spanning the signal space6 S ,  if I >> J .  

It is easily seen [ 2 ] ,  [5] that training in this case 
preserves signal space, i.e., if the initial weights of 
a hidden unit are confined to signel space they will 
stay there during training. This LS a consequence 
of the fact that the cost function is independent 
of any component of the weight pa.rameters outside 
signal space, S, regardless of the basis B used for 
representing the data, as long as El spans S .  

After preprocessing the neural network is not fed 
the actual pixel data, but the projection of the 
images on the basis B .  This justifies the nota- 
tion F ( W , B T x 3 )  for the model, in that the model 
can be said to be working on the projected data 
v3 = BTx, .  

2.1.1. Approximating the Saliency Map 

If the number of input channels I is large, the task 
of retraining I networks-i.e. to compute l$' as im- 
plied by equation (4)-is immense. In this section 
some approximations are presented to speed up the 
computation. 

The second order expansion of the cost function 
with respect to the basis vectors and the weight 
vector ze = [w: .  , . wz W1. . . W.1 consisting of 
all the parameters in W is given by 

T 

( 5 )  

6We denote the space spanned by the input vectors sj in 
the training set T by signal space S = span{sj}. 

where 6bk is the change in the k'th basis vector, and 
6u is the change in the optimal weight parameters, 
due to the changed basis. If the network is fully 
trained 

In the ill-posed case, modeling will only be mean- 
ingful if the stochastic part of the signal is highly 
correlated, i.e., the individual pixels are spatially 
correlated. Thus it can be assumed that the term &U 

roughly scales inversely with the number of inputs, 
i.e. as 1/I. We therefore neglect all terms scaling 
with 6u yielding 

= 0 so the second term vanishes'. 

thus eliminating the effect of retraining, effectively 
estimating SEi = E ( 7 ,  W ,  BZ) - E(T, W ,  €3) c.f. 
equation (4). This is in line with the Optimal Brain 
Damage scheme [7] for estimating weight saliency 
and the approximation is indeed supported by the 
numerical example. Since we compute the saliency 
for one input channel at a time, the off-diagonal 
elements of vanish, so we finally get ab,ab% 

For the two-layer network specified in equation 
(l), with h,j = tanh (wZBTz j )  we find* 

where we have introduced the quantities ej = y j  - 
F ( B T z j , W )  and S j k  = C,Wa(l - hEj)wa,k. By 
further invoking the Gauss-Newton approximation E%) for least squares prob- 
(ab,ab;l' 
lems, see e.g. [7], yielding 

N 

(9) 

71f we eliminate overfitting by pruning the network, i.e. 
forcing some parameters U' to 0,  only the remaining para- 
meters U* = U \ U' are optimized so that % = 0. On the 
other hand, we will generally have # 0 ,  which may cause 
negative estimates of the saliency. This can be explained as 
follows: If the network models from a subspace of S, called 
model-space M ,  one might say that the basis change in (3) 
perturbs signal space, so that some of the noise eliminated 
by pruning re-enters M .  Sometimes this will allow the model 
to perform better on the training set, thus yielding negative 
saliencies. We therefore choose to interpret these as zero. 

i'th element of xj .  
8Again w,,k means the k'th element of war and zj,i the 
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and since we remove only one input channel in the 
basis, i.e. 6 b k , %  = -bk,%, we get 

k = l 3 = 1  k = l 3 = 1  

(10) 
as the estimate of the saliency map. 

3.111-posed Example: Modeling from 
PET images 

We now proceed to demonstrate the practical use of 
the saliency map. Positron-Emission-Tomography 
(PET) is a way of indirectly measuring the neural 
activity of different regions of the human brain. 
resulting in 3-dimensional images. Xs the dimen- 
sion of the images is very large, affine preprocessing 
(projection of the data on the corresponding PCX- 
basis) is applied, thus reducing the computational 
requirement of the modeling. 

More specifically, we first examined 64 PET- 
scans of 8 subjects, each scanned 8 times, exposed 
to  8 different levels of saccadic eye movement activ- 
ation [6]. We thus analyze J = 64 image vectors of 
I = 128 x 128 x 48 = 768432 voxels9. 

A two-layer feed-forward neural network \vas 
trained to predict the paradigm activation level (the 
frequency of the saccadic eye movements) from the 
64 3-dimensional brain volumes. 

An est,imated saliency map was computed em- 
ploying the approximation in equation (10). In fig- 
ure 1 is0 surfaces (surfaces of equal saliency) cap- 
turing the most salient voxels are depicted as bright 
bodies floating in a box. To help localize the salient 
areas, slices of a corresponding anatomical brain im- 
age (an MR scan) are shown on the walls of the box, 
wit,h the shadows of the salient bodies projected in 
black. The slices correspond to the middle of the 
brain, one in each of the three dimensions. 

The result is in correspondence with what has 
been found using other analysis methods-e.g. Stat- 
istical Parametric Mapping (SPh.1): and the Scaled 
Subprofile Model (SSM)-on the same data [ 6 ] :  [la].  
The larger cluster of salient pixels: as seen in the 
back of the brain, is identified as the visual cortex. 

To demonstrate the accuracy of the 1st and 2nd 
order approximations of the saliency; c.f. equation 
( lo ) ,  we computed the images shown in figure 2. 
The first column shows the true change in the cost 
function" for horizontal slices through the volume 
corresponding the AC-PC'l level -17mm, AC-PC, 

'Of these a large portion is masked out, leaving vectors 
of "only" active 34863 voxels. 

"Computed as the change in the cost function wzthout 
retraining SE, = E ( W , B Z , 7 )  - E(W,B.T), so that only 
the effects of neglecting the higher order 'pure' 661, terms of 
(5) and (6) are assessed. 

"Anterior Comisura - Posterior Comisura, which are eas- 
ily identified centers in the brain, and thus used for reference 

Fig. 1: Using the saliency map to asses paradigm related 
brain regions in the saccadic eye movement task. The most 
salient voxels are depicted as is0 surfaces (surfaces of equal 
saliency) here seen as bright bodies floating in a box with 
slices of a corresponding anatomical brain scan depicted on 
the walls. Shadows of the is0 surfaces are projected in black 
on the walls. The larger cluster in the back of the brain is 
the vzsual cortex. 

ComDuted Estimated to 1. order Estimated to 2. order 

Fig. 2: From left to right: Computed saliency map, 1st order, 
and 2nd order approximations, all for 3 different slices of 
the brain. The slices correspond to the AC-PC level -17 
mm, the AC-PC level and the AC-PC level + 17". Bright 
areas have high saliencies. In the specific case ( I  = 34863 
pixels) all columns are almost identical-thus validating the 
approximations. In fact, the 2nd order term seems visually 
negligible. 

and AC-PC + 17". This corresponds to  expand- 
ing E to infinitely high order with respect to  b. The 
second and third columns are the 1st and 2nd order 
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approximations of (10). It is evident, that even the 
1st order term alone is a useful approximation in 

and 2nd order expansions, i.e 

20 

10 

- .  

the case of I = 34863 voxels. 

- 
0 

0 
- 

Fig. 3: Saliency map of the finger opposition task. The 
most salient voxels are depicted as is0 surfaces (surfaces of 
equal saliency) here seen as bright bodies floating in a box 
with slices of a corresponding anatomical 'Drain scan depicted 
on the walls. Shadows of the is0 surfaces are projected in 
black on the walls. The salient area identified is the primary 
sensory-motor cortex. 

Secondly, the saliency map was computed for a 
neural network modeling the finger opposition task, 
which involves areas of the brain controlling mo- 
tion. The data has previously been analyzed in 
[12]. Again, 8 subjects were scanned 8 times each, 4 
times resting and 4 times doing the finger opposition 
task. Thus the paradigm is on/oj€ corresponding 
to a problem of classification12. Figure 3 shows 
the saliency map in a manner similar to figure 1. 
The method clearly identifies the area known as the 
primary sensory-motor cortex. 

Further, we investigated the effect of the dimen- 
sion of the input-field I ,  on the app:coximation (10). 
For simplicity this is done on a single slice, which 
is sub-sampled to yield Q = 9 datasets with de- 
creasing I .  After performing the entire modeling 
procedure Q times, we measure as a function of I 
the normalized mean squared error for both the 1st 

12Note that for classification problems better optimization 
schemes (costfunctions) exist, see e.g [3]. 

SE+ = E ( 7 ,  W ,  B Z )  - E ( 7 ,  W ,  B) 

0 1000 2000 3000 4000 5000 6000 
Dimension of input-field, I [# Voxels] 

Fig. 4: Normalized mean squared error of the 1st (-) and 
2nd ( .  . . ) order approximations of the saliency. With increas- 
ing input-field dimension I ,  the errors decrease-for large I 
the 1st order approximation suffices. 

These quantities are shown in figure 4. We see 
that the error introduced by the approximations de- 
creases when I gets large. Further, for very large I ,  
the 2nd order term seems negligible. This is in line 
with the visual impression of figure 2. 

Finally, let us note that the saliency map easily 
computes for linear models as well. 

4. Discussion 

We have proposed the saliency map as a new 
method for understanding and visualizing feed- 
forward neural networks. Furthermore, several 
levels of approximations have been derived provid- 
ing significant computational savings. The viability 
of the approach was demonstrated on a series of 3D 
brain activation volumes. 

Though the emphasis has been on the so-called 
ill-posed case, the proposed technique can easily be 
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applied to the more standard setting, i.e. the well- 
posed case. 
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