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Kayser AS, Buchsbaum BR, Erickson DT, D’Esposito M. The
functional anatomy of a perceptual decision in the human brain. J
Neurophysiol 103: 1179–1194, 2010. First published December 23,
2009; doi:10.1152/jn.00364.2009. Our ability to make rapid decisions
based on sensory information belies the complexity of the underlying
computations. Recently, “accumulator” models of decision making
have been shown to explain the activity of parietal neurons as
macaques make judgments concerning visual motion. Unraveling the
operation of a decision-making circuit, however, involves understand-
ing both the responses of individual components in the neural circuitry
and the relationships between them. In this functional magnetic
resonance imaging study of the decision process in humans, we
demonstrate that an accumulator model predicts responses to visual
motion in the intraparietal sulcus (IPS). Significantly, the metrics used
to define responses within the IPS also reveal distinct but interacting
nodes in a circuit, including early sensory detectors in visual cortex,
the visuomotor integration system of the IPS, and centers of cognitive
control in the prefrontal cortex, all of which collectively define a
perceptual decision-making network.

I N T R O D U C T I O N

Perceptual decision making is a fundamental aspect of cog-
nition in which sensory information provides the basis for the
selection of one among many possible actions. In the simplest
case, the link between sensory evidence and a behavioral
choice is a binary one: an oncoming car suddenly veers into
one’s lane and a quick decision must be made—to swerve left
or right. Much of our understanding of this critical ability to
link sensation and action in the service of decisions is built on
quantitative models of information processing in which evi-
dence accumulates over time until a threshold indicating one or
another choice is reached. Such “accumulator” models, includ-
ing Ratcliff’s “diffusion” model (Ratcliff 1978), can success-
fully account for the speed and accuracy with which subjects
make simple binary decisions (Ratcliff 2006; Ratcliff and
McKoon 2008).

Over the past ten years, work in nonhuman primates has
revealed that such models may also explain the neurophysio-
logical implementation of perceptual decisions. In a series of
studies by Shadlen and others (Huk and Shadlen 2005; Roit-
man and Shadlen 2002; Shadlen and Newsome 2001), neuronal
firing rates in the lateral intraparietal area (LIP) of macaques
engaged in a dot-motion coherence task increased over time in
proportion to the weight of the evidence for the two alternative
directions and peaked at roughly the same magnitude for
different levels of motion coherence. These results suggest that
neurons in LIP integrate sensory input encoded by the motion-

sensitive area MT (middle temporal) in a manner consistent
with the accumulator models (Gold and Shadlen 2007). Con-
sequently, such dot-motion stimuli, in concert with the accu-
mulator model, provide a particularly compelling system for
studying perceptual decision making in humans. Much is
known of primate visual processing—and specifically of the
responses of neurons within LIP, MT, and other areas impli-
cated in decision making (e.g., Schall 2003)—thereby provid-
ing both greater control over and more constrained predictions
of the responses within these areas in human functional mag-
netic resonance imaging (fMRI) studies. Recently, studies in
humans have begun to search for evidence of accumulation
using paradigms in which the quality of sensory inputs is
varied (Forstmann et al. 2008; Heekeren et al. 2004, 2006;
Philiastides and Sajda 2007; Philiastides et al. 2006; Ploran
et al. 2007). Here we combine the motion-coherence paradigm
developed in the macaque with the specific parametric manip-
ulations possible in both the diffusion model and the dot-
motion coherence paradigm to define the full visual decision-
making network.

In the experiments described here, using this same dot-
motion decision-making paradigm, we derived predictions for
the differential blood oxygenation level–dependent (BOLD)
responses in the presumed human homologues of macaque LIP
within the intraparietal sulcus, including middle IPS (mIPS)
(Astafiev et al. 2003; Grefkes and Fink 2005; Sereno et al.
2001; Snyder et al. 1997, 2000; Stark and Zohary 2008; Tosoni
et al. 2008). Specifically, the average rate at which sensory
evidence accumulates to threshold (the “drift rate”) should vary
inversely with integrated neural activity, for the simple reason
that slower drift rates lead to longer integration times. Because
the hemodynamic response should correlate with summed
neural activity, the BOLD signal should vary inversely with the
average drift rate. We therefore predicted that if mIPS func-
tions as an accumulator in humans, BOLD responses in mIPS
should show an inverse relationship with increasing motion
coherence and that mIPS activity should decrease with the drift
rate across trials in which motion coherence was held constant.
Moreover, again based on the diffusion model (Ratcliff and
McKoon 2008), we predicted that activity in this area should
be greater for errors than that for correct responses.

We were able to confirm each of these hypotheses, lending
further experimental support to the role of accumulator models
in the explanation of perceptual decision making. In addition,
we demonstrated that mIPS functions in the context of a wider
network of areas involved in the decision process. By using the
parametric mIPS response as a signature of task-related activ-
ity, we were able to fractionate BOLD responses in additional
regions, such as the middle frontal gyrus (MFG) and occipital
pole, by their sensitivities to sensory (i.e., motion coherence)
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and behavioral (i.e., reaction time and accuracy) variables. In
so doing, we were able to preliminarily locate them, with mIPS
and MT�, along a sensory–integrative–motor continuum in-
volved in the production of a simple decision.

M E T H O D S

Six subjects (ages 23–37 yr; four males) participated in the study
and gave written informed consent in accordance with the Committee
for the Protection of Human Subjects at the University of California,
Berkeley. All subjects had normal neural anatomy, were right-handed,
and had normal or corrected-to-normal vision. Before scan sessions,
subjects were trained on the task for a minimum of four 1-h sessions
to reduce both the number of invalid trials (see following text) and
learning effects in the scanner. Once trained, all subjects underwent
five 1-h fMRI sessions, each of which consisted of four runs of 70
trials for a total of 4 � 70 � 5 � 1,400 trials per subject.

Subjects performed a visual dot-motion task in which they viewed
coherent dot motion on a background of randomly moving dots. They
were required to identify the direction of motion as quickly and
accurately as possible. A trial began with an interstimulus interval
during which subjects fixated a central cross for 4,000–12,000 ms
(Fig. 1). At the end of the interval, the fixation cross faded and the
stimulus appeared for 2,500 ms. Both dot-motion coherence and the
direction of motion (either leftward or rightward) were consistent
throughout the trial. To indicate their choice, subjects made a left or
right button-press before the end of the 2,500-ms interval. At the end
of the stimulus, the central fixation cross returned to its baseline
contrast over 500 ms and the next interstimulus interval began.

Of note, the stimulus persisted for the entire interval, regardless of
the timing of the subject’s response, to avoid otherwise perfectly
confounding our dependent measures (i.e., BOLD signal) with stim-
ulus duration. This design permitted us to distinguish brain areas
whose activity was more sensitive to the timing of the response, from
areas whose activity was more sensitive to the duration of the
stimulus. We note that this design does not strongly constrain post-
decision activity, although a recent primate experiment in which
stimulus duration was controlled by the experimenter has begun to
address this issue (Kiani et al. 2008). Moreover, our subjects re-
sponded via button-press, not saccade; the effect of response modality
on accumulation-related spiking activity remains an open question,
not evaluated here (but see Heekeren et al. 2006).

In keeping with a previous study (Palmer et al. 2005), subjects were
trained to maintain an eye position within 3° of visual angle of the
central fixation cross, to refrain from blinking, and to make a button-
press response during the 2,500-ms window. By ensuring fixation and
blink inhibition during trials, we attempted to reduce the possibility

that BOLD responses were related to either eye movements or a lack
of visual input. Eye-movement data from previous experiments for
three subjects (101–103) were acquired at the Neuroimaging Center at
the UCSF Medical Center with an ASL Eye-Trac 6 LRO (http://
www.a-s-l.com). Eye-movement data for another two subjects (105
and 106) were collected during preliminary scan sessions at the same
facility. Another subject (104) had undergone extensive eye-move-
ment training at a different facility for experiments not conducted by
the current authors and was not further evaluated here.

Because our current scanner configuration at the U.C. Berkeley
Imaging Center did not permit us to monitor eye movements during
the scan sessions themselves, relatively stringent criteria were used to
train subjects outside the scanner to maintain fixation and to avoid
blinks. Blinks were classified as any instances in which the pupil
aspect ratio was equal to zero for �8.3 ms. Eye movements were
defined as any period lasting �180 ms in which the eye position was
�3° from fixation. Finally, eye position was correlated with the
displayed direction of motion for each trial to ensure that even
subthreshold eye movements were not correlated with the direction of
stimulus motion. By these criteria, the subjects performed quite well
(Table 1).

For fMRI sessions, the ordering of dot-motion trials was computed
for 20 separate sessions using OptSeq (http://surfer.nmr.mgh.harvard.
edu/optseq/) (Dale 1999). Each motion stimulus was presented for
2,500 ms, regardless of subject response time. Stimuli were pro-
grammed in Matlab in the PsychToolbox environment (Brainard
1997; Pelli 1997), adapted from code originally written by McKinley
and Shadlen and downloaded from the PsychToolbox website (http://
psychtoolbox.org/PTB-2/). Dot-motion frames were presented within
a 7.5° aperture at 60 frames/s (fps). Dot density was fixed at 16.7
dots �deg�2 �s�1 and dot velocity was fixed at 5°/s. To avoid “blur-
ring” effects from dot motion, the set of dots was broken into three
subsets, interleaved such that the dot positions for only one subset

+

+

Dot Motion Stimulus
        (2500 ms)

 Fixation Interval
(4000-12000 ms)

 Fixation Interval
(4000-12000 ms)

Low High

FIG. 1. Bidirectional dot-motion discrimination task. Fol-
lowing a variable (4–12 s) interstimulus interval in which they
fixated the center of the screen, subjects were cued to the
upcoming stimulus by a decrease in the contrast of the fixation
cross. A motion stimulus subsequently appeared for 2,500 ms
within a circular aperture subtending 7.5° of visual angle
(dashed circle). For each trial, this stimulus consisted of a set
of white dots in which a constant proportion (but changing
subset) of the dots moved coherently (green arrows) on a
random-motion background (gray arrows). The percentage of
coherently moving dots varied across trials from low to high
(inset): in this experiment, these values ranged from 0% (i.e.,
no motion coherence) to 64% in discrete steps. Subjects viewed
the stimulus without blinking or moving their gaze from the
central fixation cross. Once they identified the direction of
motion, they were instructed to make a button-press response
both as accurately and as quickly as possible, but with an
emphasis on accuracy.

TABLE 1. Eye movement analysis

Subject
Trials With

Blinks
Trials With Loss

of Fixation
Correlation With

Motion P Value

101 0.03 0.00 �0.13 0.14
102 0.03 0.00 �0.14 0.12
103 0.04 0.03 �0.02 0.81
105 0.09 0.01 �0.10 0.27
106 0.01 0.00 0.09 0.35

The proportion of total trials compromised by blinks or loss of fixation is
shown, as is the correlation between eye position and coherent motion. None
of the correlation values reached statistical significance (shown in the last
column).
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were updated for each display frame. (This interleaved presentation,
however, was not perceptible to subjects due to the rapid frame rate.)
Dot-motion coherence was set at 0, 2, 4, 8, 16, 32, or 64% for a given
trial. Actual coherence for a single display frame was determined by
sampling from a uniform distribution, which was then thresholded by
the coherence of the current trial to yield an integral number of
coherently moving dots for each frame. All other dots (i.e., the
complement of the coherently moving subset) were given a random
motion direction, from 0 to 360°. Over the course of many display
frames in a given trial, the mean coherence across all frames ap-
proached the desired coherence for the trial, with an empirically
determined SD of 1.4% for the full 2,500 ms across all coherence
levels. For each frame, the subset of coherently moving dots was
randomly selected from the full dot set. Thus the percept of motion
was distributed across the full dot set instead of being confined to a
particular subset of dots.

To ensure that additional cues related to directionality or coherence
were not present in our stimuli, we placed additional constraints on
dot position. Dots were initially located randomly (based on a uniform
two-dimensional distribution) throughout the viewing window. To
ensure an even starting distribution of dots throughout the aperture,
we divided the viewing window into 16 quadrants and counted the
number of dots within each quadrant. If the counts within the quad-
rants showed a �95% chance of deviating from the expected chi-
square distribution, a new random placement of the dots was gener-
ated. This process was repeated until the above constraint was satis-
fied. Additionally, to ensure that motion energy was uniform
throughout the viewing window, each dot was constrained to move the
same distance from frame to frame (but in a random direction for
those dots not part of the coherently moving subset). Finally, if the
motion vector applied to a dot placed it outside the plot area, it was
repositioned in a random position along the opposite side. This
boundary condition prevented dots from collecting in any particular
region of the aperture over time.

Modeling

Following the work of Palmer and colleagues (2005), we fit the
behavioral data in this experiment with a proportional rate-diffusion
model. This model provided a principled way of fitting both reaction
time (RT) and accuracy data with a single set of parameters, thereby
simultaneously constraining the fit of both behavioral variables and
providing a parsimonious explanation for the data. As compared with
Ratcliff’s model, the model of Palmer and colleagues provides a
further constraint, in that, by tying the drift rate linearly to the motion
coherence level, it requires these same parameters to fit all the
behavioral data, at the expense of modeling the full RT distribution at
each level (Palmer et al. 2005; Ratcliff and McKoon 2008). In this
special case of Ratcliff’s model, the data are thus described by three
parameters: 1) A�, bearing on the decision threshold; 2) k, a constant
describing the relationship between the motion coherence in the
stimulus and the mean drift rate in the model; and 3) tR, the mean
residual time in seconds, representing a fixed processing duration
independent of evidence accumulation (e.g., for low-level sensory
processing or implementation of motor commands). Accuracy and RT
data for each subject were used as input. Accuracy was calculated as
the percentage of correct responses for all trials in which the subject
made a response, whereas only RTs from correct responses were
analyzed, in accord with Palmer and colleagues. Parameters were
determined by an iterative procedure in which the maximum likeli-
hood of multiple parameter sets was determined at each step. Once the
most likely parameter set for a given iteration was determined, that set
was chosen as the center of a smaller but more finely sampled search
space. Ten steps of this procedure sufficed to identify a well-fitting
model. The mean values for A�, k, and tR determined by Palmer et al.
were used as the starting point for the process, but the final parameter

values were not dependent on a precise initial condition (data not
shown).

To generate predictions for the relationship between beta values
and RT for IPS, we assumed that the BOLD response could be
estimated by the integral under the curve for the mean diffusion rate.
Although there exist more complex and realistic models of the link
between neural activity and BOLD response (reviewed in Buxton
et al. 2004), the above-cited formulation embodies the simple assump-
tion, consistent with the more complex models, that this relationship
is monotonic. To generate predictions for the BOLD response of area
MT�, we applied the work of Britten et al. (1993) as incorporated in
the work of Rees and colleagues (2000) in humans and the recent
modeling work of Niwa and Ditterich (2008). In short, the population
response across the 360° representation of motion direction for 0%
motion coherence was assumed to be untuned and the population
response for 100% motion coherence was assumed to be a well-tuned
Gaussian. To model intermediate motion coherences, we linearly
interpolated between these two endpoints across each motion direc-
tion, in keeping with data describing the linear component of the
change in firing rate across motion coherence at preferred and null
directions (Britten et al. 1993). To model the effect of changes in
motion coherence at off-preferred orientations, we took advantage of
the fact that Britten and colleagues measured a minimal, slightly
negative change in tuning curve bandwidth with increasing motion
coherence (Britten and Newsome 1998). With knowledge of these
three empirically derived linear components—the changes in pre-
ferred and null firing rates across motion coherence and the change in
tuning curves across motion coherence—we were able to generate a
linear estimate of the space of MT responses, plus/minus a constant
baseline firing rate (see following text). Because the stimulus presen-
tation time was always 2,500 ms, time served only as a linear scaling
factor in this simple formulation and could be omitted. Additionally,
the responses of MT� are known to be more complex—e.g., due to
attentional effects (Treue and Maunsell 1996), sublinear summation
(Britten 1999), and stimulus adaptation (Kohn and Movshon 2004),
among other factors—but the above-cited parameters provided an
empirical account of the data that sufficed to generate testable pre-
dictions within the scope of the current experiment.

For this simple formulation, the condition defining an unchanging
neural response across motion coherence could be determined for the
maximum spike rate response to random motion (Rrandom), the max-
imum spike rate response to motion in the preferred direction (Rpref),
and the full-width at half-maximum (FWHM) of the population
response in MT� (FWHMPOP–MT�)

Rrandom

Rpref

�
1

360 � 2� �

ln �2�
FWHMPOP–MT� � 0.003 � FWHMPOP–MT�

For example, setting a maximum spike rate (Rrandom) of 10 spikes/s
above the baseline for the response to the random noise, and a
maximum spike rate (Rpref) of 40 spikes/s above the baseline for the
response to each cell’s preferred motion direction, based on Britten
and colleagues (1993) and on a personal communication from Britten
noted in the work of Rees and colleagues (2000), a FWHMMT� of
67.6° divides the parameter regime between monotonically decreasing
(FWHMMT� 	67.6°) and monotonically increasing BOLD re-
sponses. [Note that we implicitly use a baseline of zero spike/s. With
this background rate, further suppression—and therefore increasingly
smaller responses—at high motion coherences for those neurons
tuned around the null direction would not be possible because of the
rectification nonlinearity. However, the linear estimates provided by
Britten and colleagues are such that neural responses reach (exactly)
zero only at 100% motion coherence.] Rees and colleagues used a
value of about 53° for the FWHM of the MT� population response,
one that in our model would argue for monotonically decreasing
responses. Further assuming, as they do, an independent error of
�30% in the measurement of each of these parameters, a monotoni-

1181fMRI OF A PERCEPTUAL DECISION

J Neurophysiol • VOL 103 • MARCH 2010 • www.jn.org

 on M
ay 25, 2010 

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org


cally decreasing result was found throughout 80% of the parameter
space. Larger/smaller estimates for the FWHM of the population
response and its estimation error will correspondingly decrease/in-
crease the percentage of the parameter space in which this monoton-
ically decreasing result is seen.

MRI scanning

MRI scanning was conducted on a Siemens MAGNETOM Trio 3T
MR Scanner at the Henry H. Wheeler Jr. Brain Imaging Center at the
University of California, Berkeley. Anatomical images consisted of
160 slices acquired using a T1-weighted magnetization-prepared rapid
acquisition with gradient echo (MP-RAGE) protocol (repetition time
[TR] � 2,300 ms, time to echo [TE] � 2.98 ms, field of view [FOV] � 256
mm, matrix size � 256 � 256, voxel size: 1 � 1 � 1 mm). Functional
images consisted of 24 slices acquired with a gradient echoplanar
imaging protocol (TR � 1,370 ms, TE � 27 ms, FOV � 225 mm,
matrix size � 96 � 96, voxel size: 2.3 � 2.3 � 3.5 mm). A projector
(Avotec SV-6011, http://www.avotec.org/) was used to display the
image on a translucent screen placed within the scanner bore behind
the head coil. A mirror was used to allow the subject to see the
display. The distance from the subject’s eye to the screen was 28 cm.

fMRI preprocessing

fMRI functional images were converted to 4D NIfTI format and
corrected for slice-timing offsets using SPM5 (http://www.fil.ion.ucl.
ac.uk). Motion correction was carried out with the AFNI (Analysis of
Functional NeuroImages) program 3dvolreg with a reference volume
specified as the mean image of the first run in the series. Images were
then smoothed with a 6-mm FWHM Gaussian kernel. Coregistration
was performed with the AFNI program 3dAllineate using the local
Pearson correlation cost function optimized for fMRI to structural
MRI alignment. The inverse transformation was then used to warp the
high resolution MRI to the functional image space, after which it
served as an anatomical underlay for the display of statistical para-
metric maps.

Cortical surface generation and intersubject registration

Freesurfer version 4.0 (Dale et al. 1999; Fischl et al. 1999) was used
to create cortical surfaces from each subject’s high-resolution MRI.
Each surface mesh was inflated to a sphere and registered to a
spherical template representing the average sulcal and gyral curvature
across a sample of normal brains. The AFNI program MapIcosahe-
dron was then used to resample each subject’s spherically registered
surface mesh onto a regularly sampled icosahedron to achieve a
one-to-one mapping between the nodes of each subject’s spherically
aligned surface. Volumetric data could then be mapped for each
subject to this standard regularly sampled surface and group statistics
computed for every node on the mesh.

fMRI data analysis

ANALYSIS OF PARAMETRIC EFFECT OF MOTION COHERENCE. A se-
ries of voxelwise fMRI statistical analyses, each with a different aim,
were carried out for each subject using the general linear model
(GLM) framework implemented in the AFNI program 3dDeconvolve.
To assess the overall effect of motion coherence, the seven levels of
coherence (0, 2, 4, 8, 16, 32, and 64%) and two levels of direction
(left, right) were modeled with separate regressors, each of which was
derived by convolving a gamma probability density function (peak �
6 s) with a vector of stimulus onsets for each of the conditions. Tests
of linear trends were carried out using the appropriate contrast vectors
(linear vector: [�0.32, �0.28, �0.25, �0.17, �0.04, 0.25, 0.81])
applied to the estimated beta coefficients in each voxel for each
motion-coherence level. The resulting t-statistics were mapped to each

subject’s spatially normalized cortical surface and group level analy-
ses were performed.

Because we collected a large amount of data on a relatively small
number of subjects, statistical power was relatively weak at the group
level (when using a “random effects” approach) relative to the
single-subject level. Thus for the purposes of a group activation
summary, we assessed significance using a fixed-effects summary
statistic. We computed a t-statistic for the linear contrast for every
node on the surface and divided this value by the square root of the
number of subjects (n � 6), which was compared against a standard
normal null distribution (McNamee and Lazar 2004) using an alpha
value of P 	 0.0001 for the full group. To ensure that this group map
did not obscure inconsistent responses across subjects, we also eval-
uated parametric responses on a single-subject level (Supplemental
Fig. S1).1 In contrast to the whole-brain group summary analyses, all
statistics performed on region-of-interest (ROI)–extracted data were
submitted to random effects t-test or repeated-measures ANOVA on
independently defined voxels (see following text).

COMPARISON OF CORRECT VERSUS INCORRECT TRIALS. Conditions
for which there were significant numbers of errors (�20) were split
into correct and incorrect sets. Over the course of the entire experi-
ment, all subjects had �20 errors for 2 and 4% motion coherence and
all subjects but one exceeded 20 errors for 8% motion coherence.
Conditions for which the number of errors did not meet this criterion
were modeled separately to exclude them from contributing to the
baseline activity, but they were not further addressed in this analysis.
A comparison between correct and incorrect trials was computed as a
contrast between the estimated coefficients for correct and incorrect
regressors, averaged across motion coherence. For the one subject
with 	20 error trials for the 8% condition, the analysis was performed
in the same way except that correct and incorrect trials for only 2 and
4% motion coherence were compared.

ESTIMATION OF BOLD TIME COURSES. To estimate the temporal
profile of the hemodynamic response across different levels of motion
coherence and in different regions of the brain, we used a deconvo-
lution approach with (“tent”) basis functions convolved with the
stimulus event onsets (Saad et al. 2006). This method allowed for an
unbiased estimate of the time course of the fMRI response for each of
the seven motion coherences. Note that stimulus onset times were not
locked to the onset of the TTL pulse. Consequently, we were able to
sample the time courses at multiple points (i.e., not solely at integer
values of the TR), which permitted us to estimate these average
BOLD responses across the experiment at a time resolution much
smaller than the TR itself. The deconvolution procedure was per-
formed separately for each scanning run due to computer memory
constraints, yielding one time course estimate for each condition and
each run. In subsequent ROI analyses, all of the estimated time
courses were concatenated, averaged within the ROI, and then fit with
a locally smooth polynomial regression estimator (Loader 1999). The
use of a flexible regression fit avoids assumptions that the shape of the
hemodynamic response must remain consistent across varying reac-
tion times. Time to peak was identified as that time corresponding to
the maximum amplitude of the response between 4 and 10 s after
stimulus onset.

CORRELATION BETWEEN BOLD ACTIVITY AND REACTION TIME. To
assess the relation between RT and trial-to-trial variation in the
hemodynamic response, we carried out a robust linear regression
analysis (Venables and Ripley 2003) in which each trial in the
experiment was modeled with a separate regressor, yielding 200 beta
coefficients for each level of coherence. The relation between BOLD
activity and RT was then estimated by regressing the 200 beta
coefficients against the corresponding set of RTs for each level of
motion coherence. This approach yielded two parameter estimates for

1 The online version of this article contains supplemental data.
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each level of coherence: 1) an intercept that represented the estimated
BOLD effect when RT � 0 and 2) a slope, or the estimated change in
the BOLD effect per unit change in RT. Using these parameters, we
were then able to estimate the relationship between RT and BOLD
activity across the duration of the stimulus presentation (i.e., from 0 to
2,500 ms).

DEFINITION OF ROIS. To avoid a selection bias in the definition of
ROIs, a subset of the fMRI data was separately analyzed for the
exclusive purpose of defining independent functional ROIs. Regions
were defined on the normalized spherical surface as connected clus-
ters of activity showing a significant (P 	 0.005) inverse effect of
motion coherence across the group of six subjects for runs 1, 7, 13,
and 20 (one from each day of testing). Because the region of the IPS
formed a large connected cluster of activity, extending ventrally into
the occipital lobe and dorsally into the parietal lobe, the IPS was
subdivided into anterior, medial and posterior subdivisions following
the criteria of Stark and Zohary (2008). The anterior IPS was defined
as the anteriormost third of the sulcus, the medial IPS was defined as
the dorsalmost half of the posterior portion of the IPS, and the
posterior IPS was defined as the ventralmost half of the posterior
portion of the IPS (see Table 3 in the following text for centroids in
Montreal Neurological Institute [MNI] space). Other ROIs (e.g.,
MT� and anterior insula) were defined as the intersection of the
functional activations with known neuroanatomy. Additionally, for
MT� and IPS we evaluated ROI coordinates determined by a number
of independent studies (see RESULTS). Once ROIs were formed, they
were reverse normalized from the cortical surface to each subject’s
native volumetric space using the AFNI program 3dSurfToVol. For
each reverse normalized ROI volume, masked to include only voxels
demonstrating a positive main effect of task, the voxel with the peak
(negative) t-statistic for the subject’s motion coherence contrast, and
the eight additional most significant voxels within a 6-mm radius of
the peak, were taken as the voxels of interest for each region, and
applied only to the 16 runs not used to define the ROIs to ensure
independence of the ROI definitions and the data tested. This method
ensured that the same number of voxels was used for each ROI. Two
additional ROIs that showed a main effect of stimulus, but no reliable
effect of motion coherence—the occipital pole (OPOLE) and left
motor cortex (M1)—were defined using the main effect localizer
contrast. However, for the sake of consistency and for comparison
with the other ROIs, the voxels of interest within these two main
effect-defined ROIs were also selected with reference to the peak
(negative) t-statistic for the motion coherence contrast.

FUNCTIONAL CONNECTIVITY ANALYSES. To evaluate the correla-
tion between MT� and other brain regions across all motion coher-
ence values, the series of trialwise beta estimates for the ten voxels
identified as before were averaged together to produce a reference
beta series. This vector was subsequently correlated with the beta
series for every other voxel in the brain (Rissman et al. 2004). To
eliminate any spurious effects of different motion-coherence levels on
the computed correlation, all beta values for each motion coherence
were separately normalized to a mean of zero and SD of one prior to
computing the correlation. We then applied Fisher’s r-to-z transform
to the correlation values and divided by the square root of the variance
(equal to the reciprocal of the number of degrees of freedom minus 3)
to produce Z-scores for every voxel in the brain.

To search for regions whose connectivity varied with motion
coherence, we computed the same values as before for every brain
voxel, but separately for each motion coherence. For each voxel, we
then weighted the seven resulting r-to-z transformed correlation val-
ues (one for each of the motion-coherence levels) by the same contrast
vector used in the GLM analyses and divided by the square root of the
weighted variance to produce Z-scores (Polk et al. 2007).

R E S U L T S

To better understand the neural mechanisms underlying a
simple and well-studied perceptual decision-making task, we
acquired fMRI data from six subjects performing a dot-motion
directional-discrimination task. As described in METHODS and in
Fig. 1, stimuli were randomized across seven different motion
coherence levels (0, 2, 4, 8, 16, 32, and 64%) and across two
response directions (left and right) and displayed in a jittered,
event-related design for 2,500 ms each. Highly trained subjects
were instructed to press one of two response buttons to indicate
whether the motion was leftward or rightward. No performance
feedback was provided during the scanning session. Subjects
completed a total of 20 scanning runs, each consisting of 70
trials, for a total of 1,400 trials divided evenly across the seven
coherence levels.

Behavioral performance

Behavioral data for all subjects can be seen in Fig. 2. In
keeping with previous work in both humans and macaques,
accuracy improved and reaction time declined as motion co-
herence increased. Across the group of subjects, accuracy
varied somewhat for the most difficult conditions (2% motion
coherence: mean proportion correct � 0.63, min � 0.60,
max � 0.70), but was significantly greater than chance for all
nonzero motion coherences.

Subject behavioral data were fit to a modification of Ratcliff’s
diffusion model (Ratcliff and McKoon 2008) described by
Palmer and colleagues (2005) and presented in Fig. 3A. De-
picted in gray is a hypothetical sample path of accumulating
evidence taken from a single “trial” of the diffusion model.
Starting at zero (indicating no bias for either decision 1,
represented by threshold T, or decision 2, represented by
threshold �T), the evidence for decision 1 increases with some
noise around a mean velocity vector, shown in black, that
represents the so-called drift rate. Once the evidence reaches T,
a decision is made. If we assume that the drift rate v is
proportional to motion coherence m (v � km, where k is known
as the sensitivity), the data can be fit with a simplified diffusion
model consisting of the following three parameters: A�, the
normalized threshold; k, the sensitivity; and tR, the mean
residual time for all nondecision related processes (Palmer
et al. 2005). Our data were well described by this “proportional
rate” diffusion model. The values of each of the parameters for
each of our subjects, as well as the negative log-likelihood Lp
of the fits, are shown in Table 2.

fMRI predictions and analysis

The proportional rate diffusion model also permitted us to
make predictions about expected BOLD signal change in
task-responsive areas. In previous work in the macaque by
Shadlen and others (Gold and Shadlen 2007), the diffusion
model described not only the performance of the monkey, but
also the spiking behavior of single neurons in LIP. With fMRI,
however, spatial or temporal resolution is not sufficient to
acquire such data. Instead, each fMRI voxel records BOLD
activity over several cubic millimeters of brain tissue and thus
measures not the instantaneous firing rate of a single neuron,
but rather the aggregate activity of many thousands of neurons
(Rainer et al. 2001) integrated over several seconds and filtered
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by the hemodynamic response function. Under this assump-
tion, how would the BOLD response in a putative “accumula-
tor” region, such as the IPS, change as a function of motion
coherence in the present task?

We made the simple prediction that the BOLD response
should be monotonically related to the summed neural activity,
as we and others assume (Anderson 2007; James and Gauthier
2006) and as accords with more detailed models of BOLD
responses (Buxton et al. 2004). In the intraparietal sulcus (IPS),
which contains the presumed homologues of areas such as the
macaque lateral intraparietal area (LIP) (Grefkes and Fink
2005), we hypothesized further that neurons should show
responses consistent with the summed neural activity predicted
by an accumulation process. Under this hypothesis, the neural
response for trials of high motion coherence (e.g., 64%) should
rise to threshold quickly—due to the fast accumulation of
sensory evidence—whereas for trials of low motion coherence
(e.g., 2%) the accumulation process should take longer to reach
threshold (Fig. 3B, top). However, the integral under each of
the curves (i.e., the summed neural activity, represented by the
semitransparent filled areas) is largest for low coherence stim-
uli and smallest for high coherence stimuli. As a result, the
mean BOLD response in the mIPS is predicted to vary in-
versely with the degree of motion coherence, as demonstrated
in the bottom panel of Fig. 3B. It should be emphasized that the
direction of this effect is the opposite of that observed in single-unit
recordings from area LIP data, where instantaneous firing rate, not
integrated neural activity, is the relevant measure.

However, such a prediction needs to account for the popu-
lation response. Why, for example, should the responses of
neurons whose activity increased with a particular direction of
motion not have been offset by neurons whose activity de-
creased, leading to a minimal overall response? Macaque
neurophysiology demonstrates that responses of LIP neurons
show two effects: a modest initial asymmetry in their firing rate
responses that favors the preferred over the antipreferred di-
rection (Churchland et al. 2008; Huk and Shadlen 2005; Kiani
et al. 2008; Roitman and Shadlen 2002; Shadlen and Newsome
2001) and a more pronounced increase for the preferred direc-
tion that is significantly greater just prior to the time of the
motor response (Churchland et al. 2008; Huk and Shadlen
2005; Kiani et al. 2008; Roitman and Shadlen 2002; Shadlen
and Newsome 2001). For 54 neurons represented in Fig. 7A of
Roitman and colleagues, for example, firing rates for the
preferred motion stimulus show a larger difference with respect
to the prestimulus firing rate of about 35 spikes/s than do the
antipreferred firing rates (see also Fig. 9 in Shadlen and
Newsome; Fig. 8 in Kiani and colleagues; a single represen-
tative neuron in Fig. 5 of Huk and colleagues; and the asym-
metry in buildup rates for neurons recorded by Churchland and
colleagues in their Fig. 4). Similarly, when measured at and
within 200 ms before the time of the motor response (typically,
a saccade), these differences are amplified. In Fig. 8 of Kiani
and colleagues, for example, firing rates are about 15 spikes/s
greater than the prestimulus spike rate of about 30 spikes/s for
the preferred direction, compared with a decline of no �5
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FIG. 2. Behavioral data. Reaction time
and accuracy 
 SEs across coherence for all
subjects. (Negative log likelihoods of the
model fits for all subjects can be found in
Table 2.) Note that no accuracy is shown for
the 0% motion coherence point because it is
0.50 by construction.
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spikes/s for the antipreferred direction (see also Fig. 7C in
Roitman and Shadlen; a single neuron in Fig. 5 of Huk and
colleagues; and Fig. 5 in Churchland and colleagues). More-
over, these findings are consistent with computational studies
(Beck et al. 2008; Wang 2002; Wong 2006), including studies
that model the population response of LIP (Beck et al. 2008).
Based on these modeling reports, the initial asymmetry may
relate to a rectification nonlinearity—i.e., the fact that firing
rates can decline to no lower than 0 spike/s, but can increase by
greater amounts—and the latter potentially due to attractor
dynamics that lead to selection of only the favored direction.
(The former effect may even be enhanced if prestimulus firing
rates have not been primed by a saccade target, as in our study
and unlike that in most macaque studies.) Because of limita-
tions in the time resolution of MRI, both responses will be
incorporated into the BOLD signal, with a likely more notable
effect of the latter. Thus the BOLD response was predicted to
be positive for all motion coherences, but to vary in a negative
parametric fashion with motion coherence, based on the model
shown in Fig. 3A.

We next predicted that areas involved in the sensory analysis
of motion stimuli, but not evidence accumulation per se, would
show a similar pattern—but for different reasons. For human
area MT�, whose macaque homologue provides inputs to LIP
(Shipp and Zeki 1995), primate neurophysiology offers some
predictions. Based on data reported by Britten and colleagues
(1993) and discussed by Niwa and Ditterich (2008), we mod-
eled neurons in MT� representing 360° of motion direction
preference, where the expected normalized firing rate response
is demonstrated for a leftward motion stimulus for coherences
ranging from 0 to 100% (Fig. 3B, top right). At 0% motion
coherence, all cells fire weakly in response to the pure noise
stimulus. At 100% motion coherence, there is a gradient of
responses, with high firing rates for those few cells tuned to
directions near 180°.

For parameters (see METHODS) taken directly from a previous
fMRI study of BOLD responses to motion (Rees et al. 2000),
this pattern of responses gives rise to the expected integrated
response shown in Fig. 3B (bottom right panel). We make the
assumption that the voxel measurements from fMRI for area
MT� are very likely to represent a pooled response of neurons
tuned to many motion directions. Consequently, the individual
neural responses at low coherence will be low, although many
neurons will be active. At high coherence, the maximal neural
response will be high, but responses will be limited to a smaller
number of cells, proportional to the tuning bandwidth of the
population of MT� neurons. Just as for IPS, these parameters
predict that the BOLD response should decrease with increas-
ing coherence; but contrary to the sigmoidal relationship pre-
dicted for mIPS, the shape of the predicted MT� curve is
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FIG. 3. A: in the diffusion model, evidence accumulates over time through a
process that is contaminated by noise (shown by the sample path in gray).
Evidence builds until it reaches a threshold (denoted here by T and �T), when a
decision corresponding to that threshold is made. In the model, the rate of
accumulation can be parameterized by a mean vector (shown in black) whose
value is proportional to the motion coherence of the stimulus. Additional param-
eters include the value of the threshold and a constant temporal offset that
represents fixed factors such as initial lower-level visual processing and imple-
mentation of the motor response. B: both the diffusion model (left column) and
previous knowledge of visual areas such as MT� (middle temporal, right column)
generated predictions for functional magnetic resonance imaging (fMRI). Based
on primate data, we anticipated progressively decreasing responses in intraparietal
sulcus (IPS) and MT� with increasing motion coherence. Top left: as illustrated
for 3 of the 7 different motion coherences (see legend for color scheme), evidence
accumulates at different average rates. Because the blood oxygenation level–
dependent (BOLD) signal is thought to represent a convolution of neuronal
activity with the hemodynamic response, we hypothesized that the measured fMRI
response should be proportional to the integral of the evidence, as represented by the
triangular areas beneath each line. Bottom left: the integral under the curve for the mean
response rates, in arbitrary units, is plotted against the coherence. Under the
above-described hypothesis, the measured BOLD signal declines sigmoidally with
increasing coherence (note that 0% coherence is not shown on the log scale). Top
right: to generate predictions for the responses of MT�, we relied on findings from
macaque neurophysiology. Graphed at top are the normalized firing rate responses
of neurons selective to different directions of motion across motion coherences
from 0 to 100%, based on the work of Britten and colleagues (Britten et al. 1993;
Niwa and Ditterich 2008; Rees et al. 2000). As motion coherence increases, the low
but diffuse firing rates related to the random-motion component of the stimulus decline,
whereas the large but focal firing rates for those neurons sensitive to the direction
of motion increase substantially. Bottom right: we assume that the BOLD response
captured within a single voxel represents the pooled activity of neurons of many
preferred directions. Under this assumption and using parameters taken from Rees
and colleagues (2000) (see METHODS), the measured BOLD signal declines progres-
sively across motion coherences from 0 through 64%.

TABLE 2. Parameter values for diffusion model fits to the
behavioral data for each of the six subjects

Subject A K tR ln (L)

1 1.42 7.87 0.41 10.87
2 1.14 13.73 0.42 8.44
3 1.41 12.48 0.34 14.31
4 1.11 5.60 0.27 7.88
5 1.05 8.42 0.38 12.46
6 1.11 11.51 0.32 20.47
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convex (representing the underlying linear relationship with
firing rate, as plotted in logarithmic coordinates).

This model of MT� is of course quite reduced. Although
based on previously published parameters and models, its
behavior simply reflects the fact that the spatiotemporally
pooled neural activity decreases as the motion coherence in-
creases. Other factors not accounted for here could alter the
behavior of the model. For example, if the total neural activity
in MT� were homeostatically constrained to a particular level,
any effect of spatial pooling would be eliminated, thereby
leaving changes in neural activity dependent on differences in
the duration of neural firing with changes in motion coherence.
Nonlinear changes in neural activity with response magnitude,
such as those due to surround suppression (Huang et al. 2008;
Rust et al. 2006), could likewise have notable effects not
modeled here, although the (linear) estimates were empirically
derived. Increases in the width of the population tuning curve
taken from Rees and colleagues (2000) would also produce
more positive population responses; we note that Britten and
Newsome (1998) found substantially larger tuning widths that
would lead our model to produce primarily monotonically
increasing responses. We opted for the simple model based on
linear estimates demonstrated by others to describe MT re-
sponses, but we acknowledge that further detail based on the
neurophysiology of human MT� might alter it.

Correlations of BOLD activity with motion coherence

To test for correlation between dot-motion coherence and
the BOLD response, we performed a linear trend analysis on
the estimated regression coefficients for each of the seven
coherence levels (0, 2, 4, 8, 16, 32, and 64%). Because we also
predicted positive responses in all of the regions due to the
simple presence of the visual stimulus, we inclusively masked
the result of the trend analysis with the main effect of task to
reveal only those regions demonstrating a correlation with
coherence and a positive BOLD response to the visual motion
stimulus. As predicted, along the length of the IPS (divided
into posterior, medial, and anterior regions—pIPS, mIPS,
aIPS—based on Stark and Zohary 2008), the BOLD response
was seen to increase with decreasing motion coherence. In
MT� and several frontal regions, including the frontal eye
fields (FEFs), the middle frontal gyrus (MFG), the anterior
cingulate cortex/supplementary motor area (ACC/SMA), and
anterior insula (aINS), a similar inverse variation was noted. A
full listing of areas showing a negative correlation with motion
coherence is presented in Table 3 and a surface rendering of the
group average (not itself used to generate ROIs; see METHODS)
is shown in Fig. 4. [The locations of these areas are strongly
consistent with previous results. The peak of the MT� activa-
tion, for example, lies within an average of 10.2 mm of
previous MT� coordinates (Luks and Simpson 2004; Sunaert
et al. 1999; Tootell et al. 1995; Zeki et al. 1991). Similarly, the
anterior, middle, and posterior IPS activations lie within an
average of 13.8, 17.6, and 20.6 mm of independently deter-
mined coordinates summarized in Culham et al. (2006) and
Stark and Zohary (2008)).]

Although many other regions showed a positive correlation
with coherence (see Supplemental Figs. S1 and S2), such as the
precuneus and lateral parietal cortex, none of these regions
showed both a positive main effect of task and an increasing

effect of coherence. As first described by Tosoni and col-
leagues (2008), a region previously found to vary directly with
the sensory evidence for the decision—the superior frontal
sulcus (Heekeren et al. 2004, 2006)—did not show a positive
main effect of task in the current study.

Regional differences in peak and magnitude
of BOLD response

A follow-up region of interest (ROI) analysis was performed
to examine the precise pattern of effects observed across the
seven levels of coherence. Five main ROIs—the occipital pole
(OPOLE), MT�, the middle IPS, MFG, and M1 (Fig. 5A)—
were chosen on the basis of their presumed contribution to
different aspects of the decision task along the continuum
running from sensory analysis to decision. Our evaluation of
middle IPS was based on a tool-grasping study by Stark and
Zohary (2008), suggesting that posterior IPS is more involved
in the representation of visual location of the tool, whereas
more anterior and middle regions represent the contralateral
hand. In the current study, responses were made via button
press (although others have used different response modalities;
Heekeren et al. 2006; Tosoni et al. 2008). Three of these five
ROIs were derived from a linear trend analysis (MT�, mIPS,
MFG; see METHODS), whereas OPOLE was chosen as a low-
level sensory control based on the main effect analysis because
it did not show a significant main effect of coherence and M1
was selected as a low-level motor control. (All ROIs, here and
elsewhere in this study, were derived from independent data;
see METHODS.) As illustrated by the contrast shown in Fig. 4 and
as plotted in Fig. 5B, MFG, mIPS, and MT� all show a
significant negative parametric effect of motion coherence.

TABLE 3. Areas showing significant univariate activity during
performance of the task, in MNI coordinates

Area Hemi

Coordinates

Z Score OverlapX Y Z

PMC R 43.04 3.48 29.14 �8.79 6
FEF R 28.35 �6.99 48.82 �7.88 6
aIPS R 34.72 �34.91 43.07 �7.65 6
SMA R 10.36 14.18 43.90 �7.12 6
mIPS R 24.03 �62.54 42.50 �9.54 5
FEF L �23.45 �0.91 49.58 �7.04 5
aIPS L �30.46 �49.91 45.84 �6.67 5
IFG R 48.08 6.68 18.59 �5.94 5
pIPS L �28.66 �76.05 20.16 �5.65 5
ACC R 10.74 19.46 34.29 �5.34 5
AINS R 32.01 23.19 1.22 �5.05 5
MT R 44.29 �63.77 �0.59 �4.83 5
pOCC R 30.90 �82.57 13.64 �4.59 5
mIPS L �21.90 �62.66 48.58 �6.43 4
pIPS R 29.65 �71.57 24.45 �5.82 4
AINS L �32.39 20.58 9.32 �5.66 4
pOCC L �29.11 �86.42 4.92 �5.45 4
SMA L �10.38 8.37 47.74 �4.42 4
PMC L �43.06 0.84 32.32 �5.66 3
MT L �42.92 �72.91 5.51 �4.54 3
ACC L �10.68 20.22 35.67 �4.15 3
IFG L �49.00 3.24 19.40 �3.66 2
vOCC R 25.70 �78.18 �8.37 �3.26 2
OPOLE L �24.17 �88.89 �6.27 �2.97 2
MFG L �38.09 18.96 24.50 �2.78 2

“Overlap” indicates the number of individual subjects who showed signif-
icant univariate effects within each region.
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Another implication of the changes in response profile
across brain areas concerns changes in timing, as opposed to
magnitude, of the BOLD response. Those regions more closely
tied to the response should show greater changes in the time-
to-peak of the BOLD response than should those areas more
tightly linked to sensory processing. The intuition behind this
prediction arises from the nature of the task: because the
stimulus is present for 2,500 ms, but a subject’s responses can
occur at any time within that window, activity in more action-
oriented brain regions should better correlate with response
timing. On the other hand, activity in more stimulus-oriented
brain regions should better reflect the constant 2,500-ms stim-
ulus duration, but vary in magnitude as a function of stimulus
strength—i.e., motion coherence.

This gradient in the degree of the temporal shift in the
BOLD peak is evident in the data. In Fig. 5C the relationship
between the magnitude and peak of the BOLD response is
plotted for each of the five ROIs across all seven levels of
motion coherence. It can be seen from this plot that the ROIs
differ in the degree of variance seen in the horizontal (time to
peak) and vertical (BOLD magnitude) dimensions, respec-
tively. To quantify the relative variance along these two di-
mensions, we computed the ratio between the standard devia-
tion (SD) of the group-averaged time to peak and the SD of the
group-averaged magnitude (noted as “P/H” in the following
text). To account for different scales (seconds vs. percentage
change) of the two variables, we first normalized the time-to-
peak and magnitude values before computing the ratio.

For MFG, most of the variance in MFG BOLD activity is
present in the horizontal dimension, representing the time to
peak (P/H � 3.59). M1 and mIPS exhibit variance that is
slightly more apparent in time to peak (M1: P/H � 1.68; mIPS:
P/H � 1.38). In MT� most of the variance is concentrated in
the vertical dimension, representing BOLD magnitude (P/H �
0.54). In OPOLE, there is little variance in either time to peak
or magnitude (P/H � 0.93). The corresponding average time

courses across each level of coherence and each of the five
ROIs are displayed in Fig. 5D (see Supplemental Fig. S3 for
SEs of these estimates). In MFG the time to peak in the BOLD
response is shifted forward in time as motion coherence decreases
from 64 to 0% (peak shift from 64%3 0% � 1.91 s, P 	 0.04).
This effect is also present in mIPS (peak shift � 1.22 s, P 	
0.007) and MT� (peak shift � 0.53 s, P 	 0.02), whereas in
OPOLE the effect is negligible (peak shift � 0.08 s).

BOLD correlations with response time

Because the recorded response times (RTs) were highly
(negatively) correlated with the level of motion coherence, RTs
have little independent explanatory value with respect to
changes in BOLD activation across levels of coherence. Nev-
ertheless, changes in RT within a given coherence offer a
window into the stochastic variation in the decision-making
process. On one extreme (as noted earlier), we might expect
that activation in a purely sensory region should be poorly
correlated with RT, due to the constant 2,500-ms visual input.
At the other extreme, a purely “decision” or action-oriented
region should exhibit a level of activity that is much more
dependent on the amount of accumulated evidence—which
covaries with RT—assuming that once a decision has been
made, decision-related activity in that region declines. (This
dependence may be stronger for longer reaction times; see
Ratcliff et al. 2009.) Finally, a region that is involved in the
decision-making process itself, but is also responsive to vari-
ations in sensory input such as motion coherence, should show
a response that varies both with perceptual properties of the
input and with variation in RT. For instance, if the mIPS acts
as a sensory evidence accumulator and variations in RT are
correlated with changes in the drift rate of the accumulator
process, then longer RTs—because they reflect a slower accu-
mulation of evidence and therefore more integrated neural
activity—should be associated with a greater degree of activa-

FIG. 4. Brain surface representing the fixed-
effects group response as a parametric function
of stimulus coherence, thresholded as de-
scribed in the legend. Those areas that demon-
strated a negative dependence on motion co-
herence are shown in cool/blue colors. The top
row shows a posterior view of the left and right
hemispheres of the Montreal Neurological In-
stitute (MNI) template brain, respectively,
whereas the bottom row shows the lateral
views.
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tion in mIPS. Notwithstanding the predicted relationship be-
tween RT and BOLD activity in a sensory accumulator, this
correlation should coexist with changes in activity that are
purely attributed to motion coherence and thus independent of
RT. This result follows from the model prediction that accu-
mulated neural activity in mIPS is determined by the drift rate
of the diffusion process, which is directly related to stimulus
coherence (although it is only one of many sources of RT
variation; Ratcliff et al. 2009).

To examine changes in RT independently of changes in
motion coherence, we performed separate robust linear regres-
sions for each level of motion coherence in which RT served as
the independent variable and BOLD activity (estimated as
trialwise beta coefficients) represented the dependent variable.
Each of these seven regression fits yielded an estimate of the
slope, reflecting the change in RT as a function of activation,
and an intercept, which provided an estimate of BOLD activity
when RT is zero. If a region is exclusively “driven” by RT, for
example, the slopes for each level of motion coherence should
be nonzero and constant, and there should be no difference in
the intercept value across coherences, provided that the RT

slopes do not differ as a function of motion coherence. Alter-
natively, if RT does not fully explain the effect of motion
coherence on activation, the estimate of the amount of BOLD
activation at RT of zero should demonstrate a negative para-
metric effect of motion coherence and slopes should be close to
zero.

In Fig. 6A we show group means of the parametric effect in
the intercept (i.e., matched at RT � 0 ms; left side) and the
average within-coherence slope (right side) for the 11 ROIs (as
well as OPOLE and M1) that showed a negative correlation
with motion coherence in the standard analysis. Signatures of
primarily sensory, integrative, and motor areas can be readily
identified. Regions in occipital cortex, with the exception of
OPOLE, show large coherence effects for the intercept esti-
mates paired with weak and nonsignificant RT slope effects. In
the IPS, on the other hand, there is a statistically significant
parametric trend in the intercept estimates, as well as a trend in
RT slope for mIPS—i.e., activity in the three IPS regions
reflects both a property of the stimulus, i.e., motion coherence,
and in mIPS a trend in the temporal factors associated with the
behavioral response. Further anterior, the intercept effects in
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MFG, ACC/SMA, and aINS are relatively small and nonsig-
nificant (P � 0.05) when the linear effect of coherence is
estimated after extrapolating the effect at an RT of zero. [These
parametric intercept effects for MT�, mIPS, and FEF are not
particularly sensitive to our extrapolation of the effect at RT �
0 (rather than, for example, 1,000 ms), indicating that the
responsiveness to motion coherence is consistent across RT;
see Supplemental Table S1.] However, these areas show a
large and significant relationship between RT and activation
level (Fig. 6A, right plot). Finally, to characterize the differ-
ences between areas, we pooled the areas anatomically, divid-
ing them into frontal, parietal, and occipitotemporal regions.
There was a significant difference across these three regions for
slope [main effect of region for slope: F(2,64) � 10.85, P 	
0.0001], with post hoc t-tests showing significant frontal–
occipital (t � 4.84, P 	 0.0001) and parietal–occipital (t �
2.78, P � 0.007) differences. There was a trend for the main
effect of region for the intercept estimate [F(2,64) � 2.8259,
P � 0.0667]. Post hoc t-tests revealed a significant difference
only between frontal and parietal regions (frontal–parietal
difference: t � 2.33, P � 0.023).

Decision accuracy and BOLD activation

Another prediction, derived not from neurophysiology but
from the diffusion model, pertains to expected differences in
BOLD activity on correct versus incorrect trials when speed is
not emphasized. Intuitively, for a given motion coherence,
trials with a high drift rate are associated with both more
accurate and more rapid responses. In contrast, trials with
slower drift rates generally represent weaker evidence for the
correct response and are thus more likely to result in errors
(Ratcliff and McKoon 2008). Thus, among a set of trials that
are “equally difficult” from the experimenter’s perspective
(e.g., 4% motion coherence), those trials in which the subject
commits an error are on average more likely to have occurred

for relatively slower drift rates, and therefore to be correlated
with greater BOLD responses. It follows that an evidence
accumulator should show greater activity on incorrect than that
on correct trials. Because greater responses in error trials could
result from other processes, such as error monitoring (although
previous work suggests that error monitoring may be mediated
by distinct regions such as the medial frontal gyrus and
ventral/dorsal ACC; Wheeler et al. 2008), no feedback was
given during the task to minimize the possibility of contribu-
tions from these other processes.

Behaviorally, these predictions held true for those motion
coherences (2, 4, 8%) at which enough errors were commit-
ted. These differences were significant except for 2% mo-
tion coherence, which showed a trend in that direction [2%:
correct 1.696 s, incorrect 1.750 s (T � 2.04, P � 0.096);
4%: correct 1.622 s, incorrect 1.756 s (T � 7.33, P �
0.00074); 8%: correct 1.478 s, incorrect 1.800 s (T � 5.92, P �
0.0019)]. Similarly, as can be seen in Fig. 6B, BOLD responses
were indeed larger for incorrect than correct trials in the mIPS and
the frontal ROIs: aINS, SMA, MFG, and FEF, excluding PMC.
Of note, these findings in mIPS closely parallel those of Wheeler
and colleagues (2008); their accuracy-sensitive mIPS region (Ta-
lairach coordinates �26 �68 38) is separated by about 8 mm
from the region reported here. None of the earlier visual areas,
including MT�, showed significant differences for correct and
incorrect trials.

Functional connectivity between IPS and MT�

To investigate whether the aforementioned regions might
form an interacting network, we computed the voxel-by-voxel
correlation between MT� and the rest of the brain. We
considered two cases: correlations irrespective of motion co-
herence level, and correlations that varied parametrically with
changes in motion coherence. In keeping with our predictions,
the former analysis demonstrated that the trialwise BOLD
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FIG. 6. A, leftmost panel: the weighted contrast of the reaction time (RT)–independent effects of motion coherence (see METHODS) is shown for each of 13
ROIs, with those of Fig. 5 highlighted. In the middle panel, the correlation of the beta values from each region, averaged across motion coherence, is shown.
Asterisks indicate values that are significantly different from zero (P 	 0.05). B: consistent with the correlation values, the difference in beta values between
error and correct trials (averaged across 2, 4, and 8% motion coherence, for which enough error trials were available) becomes progressively larger as one
proceeds from posterior to anterior cortex.

1189fMRI OF A PERCEPTUAL DECISION

J Neurophysiol • VOL 103 • MARCH 2010 • www.jn.org

 on M
ay 25, 2010 

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org


estimates in MT� were correlated with responses in a number
of areas including MFG, aINS, and IPS. Intriguingly, the latter
analysis revealed that correlations between MT� and only one
other region—the border between the anterior and medial
IPS—varied significantly (and inversely) with motion coher-
ence (Fig. 7). (This region also showed a significant increase in
BOLD response to incorrect over correct trials.) A second,
more lateral and inferior parietal area (not illustrated) showed
correlations that varied directly with increasing motion coher-
ence; however, the BOLD time course for this region deacti-
vated with each stimulus presentation (Singh and Fawcett
2008) and we thus suspect that it is less likely to participate in
the perceptual decision.

D I S C U S S I O N

In this study of perceptual decision making, we identified a
network of areas whose activity verified the predictions of
simple physiologically and psychologically based models. Us-
ing a motion-coherence task, we were able to take advantage of
quantitative predictions for responses throughout a perceptual
decision-making circuit for the first time, including both spe-
cific sensory input and integrative areas. Moreover, task-active
brain regions, characterized by BOLD activity that varied
inversely with motion coherence, could be organized into a
functional gradient along a sensorimotor continuum according
to their sensitivity to stimulus strength, time to peak of the
BOLD response, correlation with response times, and level of
activity during error trials. Although consistent with other
research on both macaques and humans (Gold and Shadlen
2007; Heekeren et al. 2008; Ploran et al. 2007; Schall 2003),
these data expand our understanding of how parametric
changes in perceptual discriminability, as well as trial-to-trial
variation in accuracy and RT, jointly define the activity pat-
terns in multiple regions that constitute the human visual
decision-making network.

Previous results

DECISION MAKING. A growing body of work on perceptual
decision making in humans complements the work in ma-

caques and suggests that more anterior regions are significant
components of the decision network. In a magnetoencephalo-
graphic study of a motion-detection task, Donner and col-
leagues (2007) noted that responses in the beta (12–24 Hz)
frequency range were more active before correct than incorrect
responses in areas located in the dorsolateral prefrontal and
posterior parietal cortices. In an fMRI study of a fear–disgust
discrimination, Thielscher and Pessoa (2007) found that trial-
by-trial fluctuations in activity in anterior insula, but also in
middle frontal gyrus and anterior cingulate cortex, correlated
with reaction times for decisions in which the sensory input—a
facial expression—was neutral/identical. They also identified
the importance of anterior insula and anterior cingulate in
tracking reaction times related to the degree of fear or disgust
present in the face stimuli. Ploran and colleagues (2007) took
an innovative approach based on hierarchical cluster analysis
to segregate 32 regions of interest into sensory, accumulator,
and recognition areas that appear to follow a similar posterior-
to-anterior gradient as we observe here (e.g., their Fig. 5).
Their results are quite complementary to ours, in that the
prolonged time course of their stimulus presentation (images
were gradually revealed over 14 s) permitted them to classify
regions based on time courses but not to correlate BOLD data
for individual trials with reaction times.

VISUAL AREAS. One aspect of our results—our finding of a
model-based inverse relationship between task-active areas and
predictions based on motion coherence—is consistent with
hypotheses developed in other paradigms, in that “the BOLD
response [in the context of the accumulator model] is consid-
ered proportional to the cumulative underlying neural activity”
(James and Gauthier 2006). However, at first glance this
finding appears at odds with past fMRI results in studies most
directly similar to ours. In an fMRI study of motion processing
in early visual regions, Rees and colleagues (2000) demon-
strated that MT� showed a positive linear relationship with
motion coherence. In addition to the fact that two nonfoveal
fields of dots were presented, including one that was irrelevant
to the task, their stimulus durations were quite short (250 ms)
relative to ours (2,500 ms), potentially favoring more transient
responses. For such short time durations, for example, it is
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possible that accumulation in higher-level areas was captured
in a subthreshold state for all motion coherences, in which case
higher motion coherences would be expected to be closer to
threshold, and thus with a higher integrated response, than
lower coherences—a finding quite in keeping with our results.
However, such responses were not reported in the parietal
regions, but in MT� and other occipital areas.

Heekeren and colleagues (2006), in evaluating a dot-mo-
tion–based decision task for two motion-coherence levels
(12.8 and 51.2%), briefly noted the presence of nonmonotonic
responses to additional motion-coherence levels in MT�. A
methodological difference may relate to our decision to repeat-
edly image six subjects: it is possible that we were able to
reliably identify the same parametric effect of coherence in all
six subjects for several areas, including IPS and MT�, rather
than having to rely solely on group-averaged estimates from
single scanning sessions for eight subjects, as Heekeren and
colleagues did. This additional power allowed us not only to
identify additional stimulus-responsive areas, but also to orga-
nize active regions into a functional gradient. Heekeren et al.
(2006), for example, demonstrated that some (such as FEF and
the medial frontal cortex) but not all (such as the MFG and
anterior insula) of the decision-related areas identified here did
show greater activity for 12.8% motion coherence than for
51.2%.

More generally, consideration should be given to the classes
of neuronal responses in mIPS that could potentially produce
our BOLD findings: a positive BOLD signal response for each
motion coherence level, but a negative parametric variation in
this signal related to an increasing and more durable response
to progressively lower motion coherences. A number of poten-
tial variables exist: the relative contributions of excitatory and
inhibitory neuronal metabolic activity to the positive BOLD
signal (Arthurs and Boniface 2002; Sotero and Trujillo-Barreto
2007); the balance of increases in neuronal firing rate for cells
tuned to the motion stimulus with decreases for neurons tuned
to off-preferred directions; neuronal interactions influencing
the shape of the population tuning curve to direction of motion
across IPS (Beck et al. 2008); the relative contributions of
different phases of processing to the BOLD signal (e.g., evi-
dence integration, motor preparation); the influence of nonlin-
earities (e.g., rectification nonlinearities, synaptic depression)
on firing rates (Kayser et al. 2001); the effect of top-down (e.g.,
attentional) influences on firing rates across time (Treue and
Maunsell 1996, 1999); and nonneural (e.g., hemodynamic)
effects on the BOLD response related to nonlinearities in the
transform from neural activity to blood flow (Buxton et al.
2004), among others. With respect to neuronal firing, the
excellent data available for single-cell responses leave open
primarily the question of population-level responses. Assum-
ing the single-cell responses to preferred and antipreferred
motion directions found in IPS, our data could hypothetically
be consistent with a zero-sum excitatory response, but greater
inhibitory neuronal activity for lower motion coherences due to
suppression of a larger number of motion directions within the
stimulus (translating to a larger BOLD signal at lower motion
coherences secondary to increased metabolic activity). Alter-
natively, the same effect could be achieved if the width of the
population tuning curve within IPS were sharper for higher
motion coherences, leading to lower total responses for higher
motion coherences. Based on the current data, a parsimonious

explanation requiring only greater integration time for progres-
sively lower motion coherences, as well as greater preferred
than nonpreferred firing rates, would nonetheless be greatly
aided by finer knowledge of the population response within
IPS.

These considerations also pertain to the etiology of the
negative parametric effect of motion coherence in MT�,
which does not show activity related to evidence accumulation
in macaques (Gold and Shadlen 2007). Different explanations
would invoke bottom-up, top-down, or a combination of ef-
fects. One bottom-up explanation, for example, would posit
that at low motion coherence values, MT neurons are mini-
mally active. However, because neurons of all motion direc-
tions are pooled within the BOLD response (due to limitations
in spatial resolution of the BOLD signal), the summed activity
may be larger in this case than that for high motion coherences,
in which a significantly smaller fraction of neurons is highly
active. Additionally, other mechanisms, such as synaptic de-
pression, might differentially decrease stronger perceptual
stimuli. Alternatively, top-down signals that enhance the
BOLD response in MT might be greater for low motion
coherence stimuli than that for high motion coherence, thereby
altering the population tuning curve (Scolari and Serences
2009; Serences et al. 2009). Future experiments in which
requirements for top-down control of MT representations are
varied (e.g., through attentional manipulations) would be in-
formative: if the bottom-up hypothesis holds true, for example,
such manipulations would have no effect on the parametric MT
response.

Time on task and difficulty

A significant question for these results concerns the roles of
other processes, such as time on task and difficulty. Time-on-
task arguments would posit that the explanation for these
findings relates simply to the duration between stimulus onset
and response—in other words, that BOLD responses to lower
motion coherence are different solely because these trials are
generally correlated with longer reaction times. One caution is
that increases in response time as motion coherence decreases
are a predicted consequence of the slower rate of information
accrual in the diffusion process—and thus “time on task” is not
a nuisance factor to be explained away, but rather a fundamen-
tal measure of the temporal evolution of the decision-making
process. Nevertheless, in both MT� and IPS, even after
correcting for variation in response times, the parametric effect
of motion coherence persisted (Fig. 6).

A corollary of the time-on-task argument is that regions that
vary with reaction time, but not with the sensory input, might
be related to nonspecific “waiting” processes irrelevant to the
perceptual decision itself. In both the MFG and the ACC/SMA,
for example, activity might yet be characterized as a “waiting”
process inasmuch as these regions showed only very small
effects of motion coherence after response time was taken into
account. Although one cannot rule out the possibility that these
regions are idle bystanders in the decision-making process, it
seems far more likely that they are operating at a level
sufficiently removed from the analysis of sensory features that
these factors have little impact on the levels of neural activity
(Binder et al. 2004; Thielscher and Pessoa 2007). Alterna-
tively, there is no reason to believe that accumulator behavior
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cannot occur in regions outside the IPS (Schall 2003). Lesion
studies, perhaps using transcranial magnetic stimulation, could
provide additional evidence for the role(s) that these areas play
in the task.

Task difficulty is yet another explanation that could be
advanced for these findings. Of course, difficulty can serve as
a proxy for a number of related concepts of varying specificity,
including but not limited to perceptual salience, confidence, the
need for cognitive control, and “mental effort” (Grinband et al.
2006); moreover, care should be taken to specify which pro-
cesses might be intended. It is certainly true that trials with
lower motion coherence were more “difficult” in terms of
accuracy. Regardless of the definition, however, the diffusion
model offers a characterization of the decision process that
operationalizes “difficulty” as emerging from the interaction of
a small number of parameters, most important of which is the
drift rate of the accumulation process.

Attention

One might also characterize many of the effects of variations in
motion coherence as arising primarily from an increase in atten-
tional deployment—either top-down or bottom-up—when the
signal-to-noise ratio of the stimulus decreases. Our task design
attempted to minimize bottom-up influences: every stimulus re-
mained on the screen for the same period of time and subjects
were required to maintain fixation without blinking throughout.
Consequently, bottom-up visual attentional mechanisms would
not clearly differentiate the various motion-coherence conditions.
Nonetheless, to address the possibility that random fluctuation in
the background motion noise might be important to behavior, we
measured the actual motion coherence for 60 trials at each of the
seven nominal motion coherence values and then correlated those
values with response time for two subjects (101 and 103). Across
the 2,500 ms of each motion-coherence presentation, the empiri-
cally derived average SD across motion coherence was 1.4%.
Within each defined motion-coherence level, each subject showed
a small negative correlation in reaction time with actual motion
coherence [r � �0.12, P � 0.03 and r � �0.11, P � 0.10 (ns),
respectively, by Wilcoxon’s signed-rank test]. These data suggest
that only 1–1.5% of the variance in reaction time might be
explained by variation in the sensory stimulus within a nominal
motion-coherence level.

It is also certainly possible that “top-down” attentional
processes are deployed more for low coherence than for high
coherence trials (Buschman and Miller 2007; Gazzaley et al.
2005). One approach used by Thielscher and Pessoa (2007) to
control for “overall attentional and/or task difficulty contribu-
tions” in decision areas was 1) to correlate RT with trialwise
BOLD responses, 2) to evaluate the covariance of RT with
respect to BOLD activity in a condition-specific (motion-
coherence–specific) manner, 3) to ensure that significant cor-
relations in these parameters were also seen for the null (0%
motion coherence) condition, and 4) to search for these
changes only for voxels that showed the expected mean para-
metric effects. These constraints accomplished the following
goals (numbered correspondingly): 1) to reduce the possibility
that the relationship of RT to each motion coherence level was
mediated only by mean RT, which would be indistinguishable
from global attention or variation in task difficulty; 2) to
greatly decrease the consistent (i.e., constant) within-condition

influence of global attentional/difficulty demands by examin-
ing second-order (variance-related) rather than first-order (con-
stant, or mean-related) properties of the BOLD response; 3) to
control for the presence of motion-related, so-called bottom-up
attentional effects by evaluating the condition in which mini-
mal/no coherent motion was present; and 4) to ensure that these
effects were not spurious by limiting evaluation to only task-
responsive areas. By satisfying each of these conditions,
Thielscher and Pessoa (2007) argued that the influence of
global attentional effects (and difficulty effects, for that matter)
could be minimized. Using this approach, they showed deci-
sion-related activity within hypothesized decision-sensitive ar-
eas in ACC, MFG, and IFG/anterior insula.

Figure 6A captures these arguments. For the trialwise cor-
relation analysis (requirement 1) in which the covariation of
RT and BOLD response was examined (criterion 2) for indi-
vidual motion coherences across areas showing the expected
mean effect (criterion 4), we found, as did Thielscher and
Pessoa (2007), that the MFG, aINS, and ACC/SMA (as well as
PMC and FEF) showed a significant and consistent correlation
between BOLD response and RT within all seven motion
coherences that was present even when matched for RT. [Of
note, mIPS showed a trend in this direction (P 	 0.058).]
When we explicitly evaluated RT slope solely for 0% motion
coherence (criterion 3), only these same areas (with the excep-
tion of aINS) showed slopes significantly greater than zero:
PMC (P � 0.047), FEF (P � 0.045), MFG (P � 0.02), and
ACC/SMA (P � 0.01), with mIPS again showing a trend (P �
0.065). These findings suggest that global attentional effects
alone are not sufficient to explain the parametric variations in
BOLD activity in these areas.

It might be further suggested that such arguments do not
exclude attentional effects within a given level of motion
coherence. We attempted to establish a consistent level of
attention—i.e., to minimize the influence of variations within a
motion-coherence level (e.g., due to fatigue)—through the
randomized, counterbalanced distribution of different trials,
such that a given motion coherence trial was equally likely to
occur during the beginning, middle, and end of a scan session.
Moreover, subjects were very successful (see METHODS) at
maintaining fixation, without eyeblinks, for the duration of
each stimulus presentation outside the scanner—another mech-
anism for enforcing consistent attention throughout each trial.
Finally, although studies in both macaque (reviewed in Maun-
sell and Treue 2006; Reynolds and Chelazzi 2004) and human
(Beck and Kastner 2009; Silver et al. 2005) suggest that visual
responses throughout posterior cortices are modulated by at-
tentional state, we are not aware of evidence to support the
notion that such modulatory processes are as exquisitely well
tuned to stimulus discriminability as we and others have
observed. Nonetheless, extensions of our perceptual decision-
making research in which the attentional state is further ma-
nipulated will clearly be important, especially insofar as accu-
mulator processes in parietal cortex are influenced by reentrant
or top-down modulation from control centers in frontal and/or
parietal cortex. It is conceivable, for example, that attentional
processes are necessary for the implementation of accumulator
mechanisms in the brain, although our data do not address this
possibility.
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Accumulators and future directions

In keeping with predictions of the diffusion model, we have
shown that the behavioral data in our task are well fit by the
parametric diffusion model developed by Palmer and col-
leagues (2005) and that, as this simple model predicts, re-
sponses in IPS decrease as the motion coherence increases.
One limitation of our current approach is that reaction time is
dictated by the subject, permitting us to sample beta values/
BOLD activity only for trials in which neural responses have
presumably integrated to threshold. By fixing the viewing
duration at various lengths, it might be possible to “catch”
accumulation at various time points across various motion-
coherence values, independently of motion coherence. As men-
tioned earlier, another important direction would be to explic-
itly vary the attentional state. A further limitation of the present
study is the small number of subjects tested. Our decision to
scan a small number of highly trained subjects across multiple
days resulted in excellent fits of the diffusion model and robust
single-subject activation maps. Moreover, the large number of
sessions gave us sufficient power to separately analyze a
portion of each subject’s data for the purpose of defining ROIs
in a statistically independent and unbiased manner. Neverthe-
less, in future work it will be important to test larger samples
of trained subjects that will offer greater statistical power for
both whole-brain random-effects statistics and individual dif-
ferences analyses (e.g., correlations between brain activations
and diffusion model parameters, such as drift rate).

In summary, these data support a simple model in which
motion information from primary visual cortex is extracted by
MT� and transformed in the IPS under the control of top-
down signals from sources including MFG. Areas that are
sensitive to task set (aINS, ACC/SMA; Dosenbach et al. 2006),
to uncertainty (aINS; Grinband et al. 2006), and/or to conflict
(ACC/SMA; Botvinick 2007) would then reduce the space of
possible responses in preparation for action production by
motor structures (SMA, premotor cortex). Further modifica-
tions of this task in both macaques and humans might work to
distinguish both the complex nature of the processing within,
and the relationships between, these multimodal areas in the
generation of this rapid perceptual decision.
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